File: NTube.schelp

package info (click to toggle)
supercollider-sc3-plugins 3.7.1~repack-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 14,332 kB
  • ctags: 11,704
  • sloc: cpp: 140,180; lisp: 14,746; ansic: 2,133; xml: 86; makefile: 82; haskell: 21; sh: 8
file content (233 lines) | stat: -rw-r--r-- 8,345 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
class:: NTube			
summary:: physical modeling simulation; N tubes
related:: Classes/TwoTube
categories:: UGens>PhysicalModels
//SLUGens released under the GNU GPL as extensions for SuperCollider 3, by Nick Collins, http://composerprogrammer.com/index.html
keyword:: SLUGens


Description::
Physical model; N tube sections with N-1 scattering junctions inbetween; relative areas determine k for each junction, where each junction has its own associated k. Delay lengths can be fractional and varied on the fly. Each junction also has an associated loss, as well as for the two outer feedback connections, giving N+1 loss factors.  

Note: this UGen does not support multichannel expansion, due to the use of references.  

All arrays passed in should be marked with reference symbols. 

classmethods::

method::ar


argument::input
Excitation to inject into the system
argument::lossarray
Amplitude loss factors in circulation, N+1 of them. If a single number rather than an array is given, the UGen uses this same loss factor duplicated N+1 times. 
argument::karray
N-1 scattering coefficient for junctions of adjacent tubes, usually -1<=k<=1
argument::delaylengtharray
Length in seconds of each tube's paired delay line (i.e., each waveguide section, N of them). There must be at least 2 samples per length at the synthesis sampling rate. 


Examples::

code::
{(NTube.ar(WhiteNoise.ar, 0.97,`[0.5,-0.7],`[0.01,0.02,0.01])*0.1).dup}.play


//can get it sound like respiration! 
{(NTube.ar(WhiteNoise.ar*SinOsc.ar(0.5),`[0.97,1.0,1.0,1.0,0.97],`[0.5,MouseY.kr(-1.0,1.0),0.2],`([0.01,0.02,0.01,0.005]*MouseX.kr(0.01,1.0)))*0.1).dup}.play


{(NTube.ar(PinkNoise.ar*SinOsc.ar(0.25),`[0.97,1.0,1.0,1.0,1.0,0.97],`[0.5,MouseY.kr(-1.0,1.0),0.2,-0.4],`([0.01,0.02,0.01,0.005,0.05]*MouseX.kr(0.001,1.0,'exponential')))*0.1).dup}.play


//tap on microphone in 16 beat and move mouse around... 
{(NTube.ar(SoundIn.ar,`[0.97,1.0,1.0,1.0,1.0,0.97],`[0.5,MouseY.kr(-1.0,1.0),0.2,-0.4],`([0.01,0.02,0.01,0.005,0.05]*MouseX.kr(0.001,1.0,'exponential')))*0.5).dup}.play


//delays; why stereo? warning: quite piercing
{(NTube.ar(Impulse.ar(MouseX.kr(16,1600))*MouseY.kr(0.0,1.0),`(Array.rand(11,0.95,0.99)),`(Array.series(9,0.8,-0.1)),`(Array.rand(10,0.01,0.05)) )*0.025).dup}.play



//can end up doing a huge amount of recirculation warning: quite piercing
{Limiter.ar(NTube.ar(Impulse.ar([MouseX.kr(16,1600), MouseX.kr(17,2700)])*MouseY.kr(0.0,1.0),`([0.87]++(0.99.dup(9))++[0.87]),`(Array.rand(9,0.8,1.0)),`(Array.fill(10,{0.01})) )*0.1,0.9,0.01)*0.1}.play


//can end up doing a huge amount of recirculation 
{((Limiter.ar(NTube.ar(Impulse.ar(440)*MouseX.kr(0.0,1.0),MouseY.kr(0.0,0.99),`(Array.rand(99,0.0,1.0)),`(Array.rand(100,0.0001,0.01)) ),0.99,0.01).min(1.0).max(-1.0))*0.1).dup(2)}.play


//dynamic changing of loss factors is great
(
{
var my= MouseY.kr(0.0,0.99);

Limiter.ar(NTube.ar(PinkNoise.ar*EnvGen.ar(Env.perc(0.01,0.05),MouseX.kr(0.0,1.0)>0.5),my,`(Array.rand(49,0.0,1.0)),`(Array.rand(50,0.0001,0.01)) ),0.99,0.01).min(1.0).max(-1.0)
}.play
)



//1-D vocal tract model: data for Ah sound for cross-sectional areas of vocal tract (see http://www-users.york.ac.uk/~dtm3/vocaltract.html and associated publications)
//a=FileReader.read("/Users/nickcollins/Desktop/VowelAreaFunctions/MRI/JASAPaper/A-bart.txt"); 
//
//b= Array.fill(a.size.div(2),{|i| a[2*i][0]}); 
//b.size
//c= b[0..43].asFloat

//run at higher sampling rate? 

(
var areassource= [ 0.45, 0.2, 0.26, 0.21, 0.32, 0.3, 0.33, 1.05, 1.12, 0.85, 0.63, 0.39, 0.26, 0.28, 0.23, 0.32, 0.29, 0.28, 0.4, 0.66, 1.2, 1.05, 1.62, 2.09, 2.56, 2.78, 2.86, 3.02, 3.75, 4.6, 5.09, 6.02, 6.55, 6.29, 6.27, 5.94, 5.28, 4.7, 3.87, 4.13, 4.25, 4.27, 4.69, 5.03 ];
var areas; 
var loss, karray, delayarray; 

//convert to sequence of k 

//average length of human male vocal tract 16.9cm (14.1cm adult female)  speed of sound 340.29 m/s. So delay of vocal tract is 
//0.169/340.29 = 0.00049663522289812 seconds
//0.0005*44100 is about 22 samples, so less than one sample per section of the throat if more than 22 measurements used! 
//need higher sampling rate, or less sections in model

//Loy p347, p358, Kelly Lochbaum junctions used in TubeN
//k= (Z1-Z0)/(Z1+Z0); //Z inversely proportional to A 
//k= ((A0-A1)/(A0A1))/((A0+A1)/(A0A1)) ie similar relation for Z 

//take every 4th
areas= Array.fill(11,{|i| areassource[4*i]}); 

//about 2 samples delay for each section! 

loss=0.99; 

karray= Array.fill(10,{|i| (areas[i]-areas[i+1])/(areas[i]+areas[i+1])}); 

//delayarray= Array.fill(11,{0.00049663522289812/11.0}); 
delayarray= Array.fill(11,{0.000046}); //any smaller and Nyquist problems arise... 

//Impulse too predictable, need a richer low pass filtered and frequency modulated glottal oscillation 
//Dust.ar(MouseX.kr(100,400),0.9,0.1*PinkNoise.ar)
{
Limiter.ar(NTube.ar(PinkNoise.ar(0.3),loss, `karray, `delayarray , 0.5),0.99,0.01).min(1.0).max(-1.0)
}.play

)




//Next patch only works properly at sampling rate of 192kHz! 
(
var areassource= [ 0.45, 0.2, 0.26, 0.21, 0.32, 0.3, 0.33, 1.05, 1.12, 0.85, 0.63, 0.39, 0.26, 0.28, 0.23, 0.32, 0.29, 0.28, 0.4, 0.66, 1.2, 1.05, 1.62, 2.09, 2.56, 2.78, 2.86, 3.02, 3.75, 4.6, 5.09, 6.02, 6.55, 6.29, 6.27, 5.94, 5.28, 4.7, 3.87, 4.13, 4.25, 4.27, 4.69, 5.03 ];
var areas; 
var loss, karray, delayarray; 

areas= Array.fill(44,{|i| areassource[i]}); 

loss=0.99; 

karray= Array.fill(43,{|i| (areas[i]-areas[i+1])/(areas[i]+areas[i+1])}); 

delayarray= Array.fill(44,{0.00049663522289812/44.0}); 

{
Limiter.ar(NTube.ar(Decay.ar(Impulse.ar(MouseX.kr(10,200)+LFNoise1.kr(7,4),0.0,0.5),MouseY.kr(0.01,0.2)),loss, `karray, `delayarray , 0.5),0.99,0.01).min(1.0).max(-1.0)
}.play
)





//loud hammering
(
{
var delays, source, loss, k; 
var trigger;
trigger= Impulse.kr(MouseY.kr(1,10));

loss=`(Array.fill(7,{EnvGen.ar(Env([rrand(0.95,1.0),rrand(0.95,1.0),rrand(0.5,0.9),rrand(0.0,0.1)],[0.1,rrand(0.05,0.5),rrand(0.05,0.5)]),trigger)})); 
k= `(Array.fill(5,{rrand(0.7,1.0)}));
delays=`(Array.fill(6,{exprand(0.01,0.2)})); 

delays.value.sum.postln;

source= WhiteNoise.ar(0.5)*EnvGen.ar(Env([1,1,0],[delays.value.sum,0.0]), trigger);

Out.ar(0,Pan2.ar(Limiter.ar(NTube.ar(source,loss, k, delays),0.99,0.01).min(1.0).max(-1.0),0.0)); 
}.play

)



//could be piercing if sine frequencies put higher, also potentially high CPU cost, be careful 
(
var n=7; 

SynthDef(\ntubefx,{|out=0|

ReplaceOut.ar(out, Limiter.ar(In.ar(0,2),0.99,0.01))
}).send(s); 

SynthDef(\ntubehelp,{|out=0, dur=0.5, pan=0.0, amp=0.1, lagtime=0.1, freq=440|
var env; 
var lossarray, karray, delaylengtharray; 
//Decay2.ar(Impulse.ar(freq),lagtime,0.01)
var source= SinOsc.ar(freq)*(0.95+(Line.kr(0,1,0.2)*0.05*BrownNoise.ar)); 

env= EnvGen.ar(Env([0,1,0.8,0.8,0],[0.01,0.01,dur,0.5]),doneAction:2); 

lossarray = Control.names([\lossarray]).ir(Array.rand(n+1, 0.8,0.99));
karray= Control.names([\karray]).ir(Array.rand(n-1, -0.5,0.5));
delaylengtharray= Control.names([\delaylengtharray]).ir(Array.rand(n, 0.01,0.05));
	
Out.ar(out,Pan2.ar(LeakDC.ar(env*Limiter.ar(NTube.ar(amp*source,`lossarray, `karray, `delaylengtharray),0.99,0.01).min(1.0).max(-1.0)),pan)); 

}).send(s); 
)


(
var n=7; 
var group= Group.basicNew(s,1); 

t.stop;
t={
var durs; 
var inverted; 
var range= rrand(0.1,1.0); 
var minloss= rrand(0.7,0.98);
var maxloss= (minloss+rrand(0.0,0.1)).min(0.99); 
var maxdur= rrand(0.001,0.05); 
var fx= Synth.tail(group,\ntubefx); 

durs= [0.01,0.1,0.2,0.5,1.0]; 
inverted= durs.reverse.normalizeSum; 

inf.do{

if(0.1.coin) {range= rrand(0.1,1.0);}; 
if(0.07.coin) {minloss= rrand(0.8,0.98); maxloss= (minloss+rrand(0.0,0.1)).min(0.99);}; 
if(0.05.coin) {maxdur=exprand(0.0025,0.05)}; 

a= Synth.head(group,\ntubehelp,[\dur, rrand(0.1,3.0), \freq, exprand(1,1000).round(30.0)+(3.rand2),\lagtime, rrand(0.001,0.1), \pan, rrand(-0.5,0.5), \amp, exprand(0.01,0.3), \lossarray, Array.rand(n+1, minloss,maxloss), \karray, Array.rand(n-1,range.neg,range), \delaylengtharray, Array.rand(n, 0.001, maxdur)]);

//
//s.bind({
//a.set(\freq, exprand(1,4000),\lagtime, rrand(0.001,0.1), \pan, rrand(-0.1,0.1), \amp, exprand(0.01,0.5));
//a.setn(\lossarray, Array.rand(n+1, minloss,maxloss));
//a.setn(\karray, Array.rand(n-1,range.neg,range));
//a.setn(\delaylengtharray, Array.rand(n, 0.001, maxdur));
//}); 


durs.wchoose(inverted).wait;
};

}.fork;
)


::