1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
|
/*
SuperCollider real time audio synthesis system
Copyright (c) 2002 James McCartney. All rights reserved.
http://www.audiosynth.com
Emil Post Tag Sytem UGens
by Julian Rohrhuber
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "SC_PlugIn.h"
#include <stdio.h>
#ifndef MAXFLOAT
# include <float.h>
# define MAXFLOAT FLT_MAX
#endif
static InterfaceTable *ft;
#define MAXCHANNELS 32
struct DbufTag : public Unit
{
float m_fbufnum;
SndBuf *m_buf;
int *m_rule_offsets;
int *m_rule_lengths;
int32 m_axiom_size; // all these int32 could be uint32, but sc_wrap would need support for this.
int32 m_read_pos;
int32 m_write_pos;
int m_numRules;
};
struct Dtag : public Unit
{
int *m_rule_offsets;
int *m_rule_lengths;
float *m_tape;
int32 m_tape_size;
int32 m_axiom_size;
int32 m_read_pos;
int32 m_write_pos;
int m_numRules;
};
extern "C"
{
void DbufTag_Ctor(DbufTag *unit);
void DbufTag_Dtor(DbufTag *unit);
void DbufTag_next(DbufTag *unit, int inNumSamples);
void Dtag_Ctor(Dtag *unit);
void Dtag_Dtor(Dtag *unit);
void Dtag_next(Dtag *unit, int inNumSamples);
}
/////////////////////////////////////////////////////////////
#define CHECK_BUF \
if (!bufData) { \
unit->mDone = true; \
ClearUnitOutputs(unit, inNumSamples); \
return; \
}
/////////////////////////////////////////////////////////////
enum {
dtag_tape_param,
dtag_deletion_number,
dtag_recycle,
dtag_mode,
dtag_axiom_size,
dtag_num_rules,
dtag_argoffset
};
void DbufTag_initInputs(DbufTag *unit, int argOffset, int size)
{
int memsize = size * sizeof(int);
unit->m_rule_lengths = (int*)RTAlloc(unit->mWorld, memsize);
memset(unit->m_rule_lengths, 0, memsize);
unit->m_rule_offsets = (int*)RTAlloc(unit->mWorld, memsize);
memset(unit->m_rule_offsets, 0, memsize);
for(int i=0; i < size; i++) {
unit->m_rule_lengths[i] = (int) IN0(i + argOffset); // drop first n args
}
// calculate positions
int position = argOffset + size;
for(int i=0; i < size; i++) {
unit->m_rule_offsets[i] = position;
position += unit->m_rule_lengths[i];
// printf("m_rule_offsets[%d]: %d\n", i, unit->m_rule_offsets[i]);
}
}
void DbufTag_reset(DbufTag *unit, int recycle, int inNumSamples)
{
GET_BUF
CHECK_BUF
RESETINPUT(dtag_deletion_number); // reset deletion number
// if axiom size exceeds buffer, omit part of the axiom.
if(unit->m_axiom_size > (int) bufFrames) {
unit->m_axiom_size = (int) bufFrames;
}
if(recycle == 0) {
// recycle = 0 - write axiom to buffer again.
unit->m_read_pos = 0;
unit->m_write_pos = (int32) unit->m_axiom_size;
if(unit->m_write_pos >= bufFrames) {
unit->m_write_pos = unit->m_write_pos % bufFrames;
}
// write axiom to tape
for(int i = 0; i < unit->m_write_pos; i++) {
bufData[i] = (float) DEMANDINPUT_A(dtag_argoffset + i, inNumSamples);
// printf("axiom[%d] = %d\n", i, (int) bufData[i]);
}
} else if (recycle < 0) {
// recycle < 0 - write_pos is left where it is, read_pos is offset by recycle value
unit->m_read_pos = unit->m_write_pos + recycle;
if(unit->m_read_pos < 0) {
unit->m_read_pos = unit->m_read_pos % bufFrames;
}
} else {
// recycle > 0 - read_pos is left where it is, write_pos is offset by recycle value
unit->m_write_pos = unit->m_read_pos + recycle;
if(unit->m_write_pos >= bufFrames) {
unit->m_write_pos = unit->m_write_pos % bufFrames;
}
//printf("new write: %d, read: %d\n", unit->m_write_pos, unit->m_read_pos);
}
}
void DbufTag_end(DbufTag *unit, int which_case, int inNumSamples) {
int recycle = (int) DEMANDINPUT_A(dtag_recycle, inNumSamples);
int mode = (int) IN0(dtag_mode);
if(which_case == 0) {
DbufTag_reset(unit, recycle, inNumSamples);
if(mode == 4) {
printf("tag system was reset externally.\n");
if(recycle) { printf("recycling. axiom length: %d\n", recycle); }
}
return;
}
if((mode == 0) || (mode == which_case)) {
if(recycle) {
DbufTag_reset(unit, recycle, inNumSamples);
} else {
OUT0(0) = NAN;
}
return;
}
if(mode >= 4) {
printf("tag system halt: ");
if(which_case == 1) {
printf("divergence too large (buffer filled up).\n");
} else {
printf("terminated (string empty)\n");
}
if(recycle) {
printf("recycling. axiom length: %d\n", recycle);
//printf("new axiom:\n"); // todo.
DbufTag_reset(unit, recycle, inNumSamples);
GET_BUF
printf("new axiom (index %d..%d): ", unit->m_read_pos, unit->m_write_pos);
int32 n = unit->m_write_pos - unit->m_read_pos;
if(n < 0) { n = sc_wrap(n, 0, bufFrames - 1); }
for(int32 i=0; i < n; i++) {
int32 j = sc_wrap(unit->m_read_pos + i, 0, bufFrames - 1);
printf("%d ", (int)bufData[j]);
}
printf("\n");
} else {
OUT0(0) = NAN;
}
return;
}
OUT0(0) = NAN;
}
void DbufTag_Ctor(DbufTag *unit)
{
SETCALC(DbufTag_next);
unit->m_fbufnum = -1e9f;
unit->m_axiom_size = (int) IN0(dtag_axiom_size);
unit->m_numRules = (int) IN0(dtag_num_rules);
DbufTag_initInputs(unit, dtag_argoffset + unit->m_axiom_size, unit->m_numRules);
DbufTag_reset(unit, 0, 1);
OUT0(0) = 0.f;
}
void DbufTag_Dtor(DbufTag *unit)
{
RTFree(unit->mWorld, unit->m_rule_lengths);
RTFree(unit->mWorld, unit->m_rule_offsets);
}
void DbufTag_next(DbufTag *unit, int inNumSamples)
{
GET_BUF
CHECK_BUF
int rule_length;
int cur_rule_pos, next_rule_pos;
int32 write_pos = unit->m_write_pos;
int32 read_pos = unit->m_read_pos;
float value = bufData[read_pos];
int ruleIndex = (int) value;
// verbose print mode
if(!(IN0(dtag_mode) < 5.f)) {
int max = bufFrames;
if(max > 32) { max = 32; }
for(int i=0; i<max; i++) {
if(i == write_pos) { printf(">"); } else if (i == read_pos) { printf("|"); } else { printf(" "); }
printf("%d", (int) bufData[i]);
}
printf("\n");
printf("apply rule %d\n", ruleIndex);
}
//printf("writepos: %d readpos: %d rule_length: %d\n", unit->m_write_pos, unit->m_read_pos, rule_length);
if (!inNumSamples) {
DbufTag_end(unit, 0, inNumSamples);
return;
}
int v = (int) DEMANDINPUT_A(dtag_deletion_number, inNumSamples);
if(ruleIndex >= unit-> m_numRules || (ruleIndex < 0)) {
// printf("no rule found for value %d\n", ruleIndex);
OUT0(0) = NAN; // no rule found
return;
} else {
OUT0(0) = value;
cur_rule_pos = unit->m_rule_offsets[ruleIndex];
rule_length = unit->m_rule_lengths[ruleIndex];
for(int i=0; i < rule_length; i++) {
// copy production rule.
bufData[write_pos] = DEMANDINPUT_A(cur_rule_pos + i, inNumSamples);
write_pos += 1;
if(write_pos == read_pos) {
DbufTag_end(unit, 1, inNumSamples);
return;
}
if(write_pos == bufFrames) {
write_pos = 0;
}
}
for(int j=0; j < v; j++) {
read_pos += 1;
if(write_pos == read_pos) {
DbufTag_end(unit, 2, inNumSamples);
return;
}
if(read_pos == bufFrames) {
read_pos = 0;
}
}
unit->m_write_pos = write_pos;
unit->m_read_pos = read_pos;
}
}
///////////////////////////////////////////////////////
void Dtag_initInputs(Dtag *unit, int argOffset, int size)
{
unit->m_tape_size = (int32) IN0(dtag_tape_param);
// make sure axiom isn't longer than the tape.
if(unit->m_axiom_size > (int) unit->m_tape_size) {
unit->m_axiom_size = (int) unit->m_tape_size;
}
// allocate tape
int32 memtapesize = (int32) unit->m_tape_size * sizeof(int);
unit->m_tape = (float*)RTAlloc(unit->mWorld, memtapesize);
memset(unit->m_tape, 0, memtapesize);
// allocate offsets and lengths
int memsize = size * sizeof(int);
unit->m_rule_lengths = (int*)RTAlloc(unit->mWorld, memsize);
memset(unit->m_rule_lengths, 0, memsize);
unit->m_rule_offsets = (int*)RTAlloc(unit->mWorld, memsize);
memset(unit->m_rule_offsets, 0, memsize);
for(int i=0; i < size; i++) {
unit->m_rule_lengths[i] = (int) IN0(i + argOffset); // drop first n args
}
// calculate positions
int position = argOffset + size;
for(int i=0; i < size; i++) {
unit->m_rule_offsets[i] = position;
position += unit->m_rule_lengths[i];
// printf("m_rule_offsets[%d]: %d\n", i, unit->m_rule_offsets[i]);
}
}
void Dtag_reset(Dtag *unit, int recycle, int inNumSamples)
{
RESETINPUT(dtag_deletion_number); // reset deletion number
// other than in DbufTag, m_axiom_size doesn't have to be checked again here, since buffer is fix.
if(recycle == 0) {
// recycle = 0 - write axiom to buffer again.
unit->m_read_pos = 0;
unit->m_write_pos = (int32) unit->m_axiom_size;
// write axiom to tape
for(int i = 0; i < unit->m_axiom_size; i++) {
unit->m_tape[i] = DEMANDINPUT_A(dtag_argoffset + i, inNumSamples);
// printf("axiom[%d] = %d\n", i, unit->m_tape[i]);
}
} else if (recycle < 0) {
// recycle < 0 - write_pos is left where it is, read_pos is offset by recycle value
if(unit->m_write_pos >= unit->m_tape_size) {
unit->m_write_pos = unit->m_write_pos % unit->m_tape_size;
}
unit->m_read_pos = unit->m_write_pos + recycle;
if(unit->m_read_pos < 0) {
unit->m_read_pos = sc_wrap(unit->m_read_pos, 0, unit->m_tape_size - 1);
}
} else {
// recycle > 0 - read_pos is left where it is, write_pos is offset by recycle value
if(unit->m_read_pos >= unit->m_tape_size) {
unit->m_read_pos = unit->m_read_pos % unit->m_tape_size;
}
unit->m_write_pos = unit->m_read_pos + recycle;
if(unit->m_write_pos >= unit->m_tape_size) {
unit->m_write_pos = unit->m_write_pos % unit->m_tape_size;
}
}
}
void Dtag_end(Dtag *unit, int which_case, int inNumSamples) {
int recycle = (int) DEMANDINPUT_A(dtag_recycle, inNumSamples);
int mode = (int) IN0(dtag_mode);
if(which_case == 0) {
Dtag_reset(unit, recycle, inNumSamples);
if(mode == 4) {
printf("tag system was reset.\n");
if(recycle) { printf("recycling. axiom length: %d\n", recycle); }
}
return;
}
if((mode == 0) || (mode == which_case)) {
if(recycle) {
Dtag_reset(unit, recycle, inNumSamples);
} else {
OUT0(0) = NAN;
}
return;
}
if(mode >= 4) {
printf("tag system halt: ");
if(which_case == 1) {
printf("divergence too large (buffer filled up).\n");
} else {
printf("terminated (string empty)\n");
}
if(recycle) {
printf("recycling. axiom length: %d\n", recycle);
Dtag_reset(unit, recycle, inNumSamples);
printf("new axiom (index %d..%d): ", unit->m_read_pos, unit->m_write_pos);
int32 n = unit->m_write_pos - unit->m_read_pos;
if(n < 0) { n = sc_wrap(n, 0, unit->m_tape_size - 1); }
for(int32 i=0; i < n; i++) {
int32 j = sc_wrap(unit->m_read_pos + i, 0, unit->m_tape_size - 1);
printf("%d ", (int)unit->m_tape[j]);
}
printf("\n");
} else {
OUT0(0) = NAN;
}
return;
}
OUT0(0) = NAN;
}
void Dtag_Ctor(Dtag *unit)
{
SETCALC(Dtag_next);
unit->m_axiom_size = (int) IN0(dtag_axiom_size);
unit->m_numRules = (int) IN0(dtag_num_rules);
// initialise and reset
Dtag_initInputs(unit, dtag_argoffset + unit->m_axiom_size, unit->m_numRules);
Dtag_reset(unit, 0, 1);
OUT0(0) = 0.f;
}
void Dtag_Dtor(Dtag *unit)
{
RTFree(unit->mWorld, unit->m_rule_lengths);
RTFree(unit->mWorld, unit->m_rule_offsets);
RTFree(unit->mWorld, unit->m_tape);
}
void Dtag_next(Dtag *unit, int inNumSamples)
{
int rule_length;
int cur_rule_pos, next_rule_pos;
int32 write_pos = unit->m_write_pos;
int32 read_pos = unit->m_read_pos;
int32 tape_size = unit->m_tape_size;
float *tape = unit->m_tape;
float tapeVal = tape[read_pos];
int ruleIndex = (int) tapeVal;
// verbose print mode
if(!(IN0(dtag_mode) < 5.f)) {
int max = (int) unit->m_tape_size;
if(max > 32) { max = 32; }
for(int i=0; i<max; i++) {
if(i == write_pos) { printf(">"); } else if (i == read_pos) { printf("|"); } else { printf(" "); }
printf("%d", (int) unit->m_tape[i]);
}
printf("\n");
printf("apply rule %d\n", ruleIndex);
}
if (!inNumSamples) {
Dtag_end(unit, 0, 1);
return;
}
int v = (int) DEMANDINPUT_A(dtag_deletion_number, inNumSamples);
//printf("ruleIndex: %d rulesize: %d\n", ruleIndex, unit->m_numRules);
if(ruleIndex >= unit->m_numRules || (ruleIndex < 0)) {
// printf("no rule found for value %d rulesize: %d\n", ruleIndex, unit->m_numRules);
OUT0(0) = NAN; // no rule found
return;
} else {
OUT0(0) = tapeVal;
cur_rule_pos = unit->m_rule_offsets[ruleIndex];
rule_length = unit->m_rule_lengths[ruleIndex];
for(int i=0; i < rule_length; i++) {
tape[write_pos] = DEMANDINPUT_A(cur_rule_pos + i, inNumSamples);
write_pos += 1;
if(write_pos == read_pos) {
Dtag_end(unit, 1, inNumSamples);
return;
}
if(write_pos == tape_size) {
write_pos = 0;
}
}
for(int j=0; j < v; j++) {
read_pos += 1;
if(write_pos == read_pos) {
Dtag_end(unit, 2, inNumSamples);
return;
}
if(read_pos == tape_size) {
read_pos = 0;
}
}
unit->m_write_pos = write_pos;
unit->m_read_pos = read_pos;
}
}
struct Dfsm : public Unit
{
//int m_repeats;
int m_num_sizes;
int m_num_states;
int m_state_offset;
int *m_nextstate_indices;
int *m_nextstate_sizes;
int m_current_state;
int m_current_state_offset;
float m_count;
int m_end;
};
extern "C"
{
void load(InterfaceTable *inTable);
void Dfsm_Ctor(Dfsm *unit);
void Dfsm_Dtor(Dfsm *unit);
void Dfsm_next(Dfsm *unit, int inNumSamples);
};
//////////////////////////////////////////////////////////////////////////////////////////////////
void Dfsm_reset(Dfsm *unit) {
unit->m_current_state = 0;
unit->m_end = 0;
unit->m_count = 0.f;
for(int i = 0; i < unit->m_num_states; i++) {
// // printf("reset input[%d]\n", unit->m_state_offset + i);
RESETINPUT(unit->m_state_offset + i);
}
}
void Dfsm_next(Dfsm *unit, int inNumSamples)
{
int current_state_offset, state_offset;
int choice;
int index_index;
int next_index;
float outval;
// // printf("\n\n\n ------- \n");
////////////////////// reset /////////////////////////
// current_state is the internal state, including exit / enty pair.
// i.e. first rule is pair [exit, entrance]
if (!inNumSamples) {
Dfsm_reset(unit);
// printf("resetting\n");
}
// get some member state
state_offset = unit->m_state_offset;
current_state_offset = unit->m_current_state_offset;
////////////////////// embedding mode /////////////////////////
if(unit->m_count > 0.f) {
outval = DEMANDINPUT_A(current_state_offset, inNumSamples); // this will have to switch behaviour, depending on slotRepeats
if(sc_isnan(outval)) {
if(unit->m_end) {
// exit state last value. end.
OUT0(0) = NAN;
unit->m_end = 0;
unit->m_count = 0.f;
// // printf("output: NAN to end stream\n");
return;
} else {
// other state last value
// // printf("(1) resetting input %d\n", current_state_offset);
RESETINPUT(current_state_offset);
};
} else {
// embed current value of current state
// // printf("outval: %f\n", outval);
OUT0(0) = outval;
unit->m_count --;
return;
}
}
////////////////////// init count /////////////////////////
// get new count
unit->m_count = DEMANDINPUT_A(0, inNumSamples) - 1.f; // offset: first value is embedded below.
if(sc_isnan(unit->m_count)) { // terminate and reset
RESETINPUT(0);
OUT0(0) = NAN;
unit->m_end = 0;
unit->m_count = 0.f;
// // printf("output: NAN to end stream\n");
return;
};
////////////////////// finding next state /////////////////////////
if(unit->m_current_state >= unit->m_num_states) {
unit->m_current_state_offset = state_offset;
outval = DEMANDINPUT_A(unit->m_current_state_offset, inNumSamples); // get first state, which is the packed termination state
OUT0(0) = outval;
// // printf("going to exit state (1): %d end\n", unit->m_current_state);
// // printf("output: %f\n", outval);
unit->m_end = 1;
return;
}
// how many nextstates ?
float size = (float) unit->m_nextstate_sizes[unit->m_current_state];
// get random value and generate random offset (0..size)
float rand = DEMANDINPUT_A(1, inNumSamples);
choice = (int) sc_max(0.f, rand * size - 0.5f);
// look up the nextstate index
index_index = unit->m_nextstate_indices[unit->m_current_state] + choice; // we'll need to limit this /0..1/
// get the next state index from the input, add one for offset: first rule is pair [exit, entrance]
next_index = IN0(index_index) + 1;
unit->m_current_state= next_index;
current_state_offset = state_offset + next_index;
// exit
if(next_index >= unit->m_num_states) {
current_state_offset = state_offset; // get first state, which is the packed termination state
// // printf("going to exit state (2): %d end\n", next_index);
unit->m_end = 1;
}
// get first value
outval = DEMANDINPUT_A(current_state_offset, inNumSamples);
if(sc_isnan(outval)) {
// // printf("(1) resetting input %d\n", current_state_offset);
if(unit->m_end) {
outval = NAN;
} else {
RESETINPUT(current_state_offset);
outval = DEMANDINPUT_A(current_state_offset, inNumSamples);
}
}
OUT0(0) = outval;
// set member state
unit->m_current_state_offset = current_state_offset;
// printf("indexindex: %d choice: %d, previndex: %d nextindex: %d outval index: %d\n", index_index, choice, unit->m_current_state, next_index, state_offset + next_index);
// // printf("outval: %f\n", outval);
}
void Dfsm_Ctor(Dfsm *unit)
{
SETCALC(Dfsm_next);
int numStates = (int)IN0(2);
unit->m_num_states = numStates;
// keep state size information
int memNumSize = numStates * sizeof(int);
unit->m_nextstate_sizes = (int*)RTAlloc(unit->mWorld, memNumSize);
memset(unit->m_nextstate_sizes, 0, memNumSize);
for(int i = 0; i < numStates; i++) {
unit->m_nextstate_sizes[i] = (int) IN0(3 + i);
}
// keep state index information
unit->m_state_offset = 3 + numStates;
int nextOffset = unit->m_state_offset + numStates;
int memNumIndices = numStates * sizeof(int);
unit->m_nextstate_indices = (int*)RTAlloc(unit->mWorld, memNumIndices);
memset(unit->m_nextstate_indices, 0, memNumIndices);
for(int i = 0; i < numStates; i++) {
unit->m_nextstate_indices[i] = nextOffset;
nextOffset = nextOffset + unit->m_nextstate_sizes[i];
}
// reset
unit->m_current_state = 0;
unit->m_end = 0;
unit->m_count = 0.f;
OUT0(0) = 0.f;
}
void Dfsm_Dtor(Dfsm *unit)
{
RTFree(unit->mWorld, unit->m_nextstate_indices);
RTFree(unit->mWorld, unit->m_nextstate_sizes);
}
//////////////////////////////////////////////////////
PluginLoad(TagSystem)
{
ft = inTable;
DefineDtorUnit(DbufTag);
DefineDtorUnit(Dtag);
DefineDtorUnit(Dfsm);
}
|