1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
|
/*
BEASTmulch UGens
Copyright (C) 2009 Scott Wilson
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as published by
the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
http://www.beast.bham.ac.uk/research/mulch.shtml
beastmulch-info@contacts.bham.ac.uk
The BEASTmulch project was supported by a grant from the Arts and Humanities Research Council of the UK: http://www.ahrc.ac.uk
*/
/*
This version ported from the PD implementation by Scott Wilson
Copyright
This software is being provided to you, the licensee, by Ville Pulkki,
under the following license. By obtaining, using and/or copying this
software, you agree that you have read, understood, and will comply
with these terms and conditions: Permission to use, copy, modify and
distribute, including the right to grant others rights to distribute
at any tier, this software and its documentation for any purpose and
without fee or royalty is hereby granted, provided that you agree to
comply with the following copyright notice and statements, including
the disclaimer, and that the same appear on ALL copies of the software
and documentation, including modifications that you make for internal
use or for distribution:
Written by Ville Pulkki 1999
Helsinki University of Technology
and
Unversity of California at Berkeley
*/
/*
SuperCollider real time audio synthesis system
Copyright (c) 2002 James McCartney. All rights reserved.
http://www.audiosynth.com
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "SC_PlugIn.h"
#include <cmath>
#include <limits>
#include <stdio.h>
#ifdef NOVA_SIMD
#include "simd_memory.hpp"
#include "simd_binary_arithmetic.hpp"
using nova::wrap_argument;
#ifdef __GNUC__
#define inline_functions __attribute__ ((flatten))
#else
#define inline_functions
#endif
#endif
#define RES_ID 9171 /* resource ID for assistance (we'll add that later) */
#define MAX_LS_SETS 100 /* maximum number of loudspeaker sets (triplets or pairs) allowed */
#define MAX_LS_AMOUNT 55 /* maximum amount of loudspeakers, can be increased */
static InterfaceTable *ft;
struct VBAP : Unit
{
float x_azi; /* panning direction azimuth */
float x_ele; /* panning direction elevation */
float x_set_inv_matx[MAX_LS_SETS][9]; /* inverse matrice for each loudspeaker set */
float x_set_matx[MAX_LS_SETS][9]; /* matrice for each loudspeaker set */
int x_lsset[MAX_LS_SETS][3]; /* channel numbers of loudspeakers in each LS set */
int x_lsset_available; /* have loudspeaker sets been defined with define_loudspeakers */
int x_lsset_amount; /* amount of loudspeaker sets */
int x_ls_amount; /* amount of loudspeakers */
int x_dimension; /* 2 or 3 */
float x_spread; /* speading amount of virtual source (0-100) */
float x_spread_base[3]; /* used to create uniform spreading */
float *final_gs;
float m_chanamp[MAX_LS_AMOUNT]; // for smoothing amp changes max channels 55 at the moment
};
// for circular smoothing
struct CircleRamp : public Unit
{
double m_level, m_slope;
int m_counter;
};
//////////////////////////////////////////////////////////////////////////////////////////////////
extern "C"
{
void load(InterfaceTable *inTable);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Functions and globals adapted from PD implementation
// Unused:
//static t_class *vbap_class;
//static void *vbap_new(t_symbol *s, int ac, t_atom *av); /* using A_GIMME - typed message list */
// these are input responses:
//void vbap_bang(VBAP *x);
/* static void vbap_int(t_vbap *x, t_float n); */
//void vbap_matrix(VBAP *x, t_symbol *s, int ac, t_atom *av);
static void angle_to_cart(float azi, float ele, float res[3])
/* converts angular coordinates to cartesian */
{
float atorad = (2 * 3.1415927 / 360) ;
res[0] = cos((float) azi * atorad) * cos((float) ele * atorad);
res[1] = sin((float) azi * atorad) * cos((float) ele * atorad);
res[2] = sin((float) ele * atorad);
}
static void cart_to_angle(float cvec[3], float avec[3])
/* converts cartesian coordinates to angular */
{
// float tmp, tmp2, tmp3, tmp4; /* warning: unused variable */
float atorad = (2 * 3.1415927 / 360) ;
float pi = 3.1415927;
// float power; /* warning: unused variable */
float dist, atan_y_per_x, atan_x_pl_y_per_z;
float azi, ele;
if(cvec[0]==0.0)
atan_y_per_x = pi / 2;
else
atan_y_per_x = atan(cvec[1] / cvec[0]);
azi = atan_y_per_x / atorad;
if(cvec[0]<0.0)
azi +=180;
dist = sqrt(cvec[0]*cvec[0] + cvec[1]*cvec[1]);
if(cvec[2]==0.0)
atan_x_pl_y_per_z = 0.0;
else
atan_x_pl_y_per_z = atan(cvec[2] / dist);
if(dist == 0.0)
{
if(cvec[2]<0.0)
atan_x_pl_y_per_z = -pi/2.0;
else
atan_x_pl_y_per_z = pi/2.0;
}
ele = atan_x_pl_y_per_z / atorad;
dist = sqrtf(cvec[0] * cvec[0] +cvec[1] * cvec[1] +cvec[2]*cvec[2]);
avec[0]=azi;
avec[1]=ele;
avec[2]=dist;
}
static void new_spread_dir(VBAP *x, float spreaddir[3], float vscartdir[3], float spread_base[3])
/* subroutine for spreading */
{
float beta,gamma;
float a,b;
float pi = 3.1415927;
float power;
gamma = acos(vscartdir[0] * spread_base[0] +
vscartdir[1] * spread_base[1] +
vscartdir[2] * spread_base[2])/pi*180;
if(fabs(gamma) < 1){
angle_to_cart(x->x_azi+90, 0, spread_base);
gamma = acos(vscartdir[0] * spread_base[0] +
vscartdir[1] * spread_base[1] +
vscartdir[2] * spread_base[2])/pi*180;
}
beta = 180 - gamma;
b=sin(x->x_spread * pi / 180) / sin(beta * pi / 180);
a=sin((180- x->x_spread - beta) * pi / 180) / sin (beta * pi / 180);
spreaddir[0] = a * vscartdir[0] + b * spread_base[0];
spreaddir[1] = a * vscartdir[1] + b * spread_base[1];
spreaddir[2] = a * vscartdir[2] + b * spread_base[2];
power=sqrt(spreaddir[0]*spreaddir[0] + spreaddir[1]*spreaddir[1]
+ spreaddir[2]*spreaddir[2]);
spreaddir[0] /= power;
spreaddir[1] /= power;
spreaddir[2] /= power;
}
static void new_spread_base(VBAP *x, float spreaddir[3], float vscartdir[3])
/* subroutine for spreading */
{
float d;
float pi = 3.1415927;
float power;
d = cos(x->x_spread/180*pi);
x->x_spread_base[0] = spreaddir[0] - d * vscartdir[0];
x->x_spread_base[1] = spreaddir[1] - d * vscartdir[1];
x->x_spread_base[2] = spreaddir[2] - d * vscartdir[2];
power=sqrt(x->x_spread_base[0]*x->x_spread_base[0] + x->x_spread_base[1]*x->x_spread_base[1]
+ x->x_spread_base[2]*x->x_spread_base[2]);
x->x_spread_base[0] /= power;
x->x_spread_base[1] /= power;
x->x_spread_base[2] /= power;
}
static void cross_prod(float v1[3], float v2[3], float v3[3])
/* vector cross product */
{
float length;
v3[0] = (v1[1] * v2[2] ) - (v1[2] * v2[1]);
v3[1] = (v1[2] * v2[0] ) - (v1[0] * v2[2]);
v3[2] = (v1[0] * v2[1] ) - (v1[1] * v2[0]);
length= sqrt(v3[0]*v3[0] + v3[1]*v3[1] + v3[2]*v3[2]);
v3[0] /= length;
v3[1] /= length;
v3[2] /= length;
}
static void additive_vbap(float *final_gs, float cartdir[3], VBAP *x)
/* calculates gains to be added to previous gains, used in
// multiple direction panning (source spreading) */
{
float power;
int i,j,k, gains_modified;
float small_g;
float big_sm_g, gtmp[3];
int winner_set;
// float new_cartdir[3]; /* warning: unused variable */
// float new_angle_dir[3]; /* warning: unused variable */
int dim = x->x_dimension;
int neg_g_am, best_neg_g_am;
float g[3];
int ls[3] = { 0, 0, 0 };
big_sm_g = -100000.0;
best_neg_g_am=3;
/* BUG: there is a bug that sometimes causes x->x_lsset_amount to be a massive
* number. I haven't tracked it down yet, but its probably an init
* bug. 2006-08-13 <hans@at.or.at>
*/
// post("x_lsset_amount: %li", x->x_lsset_amount);
for(i=0;i<x->x_lsset_amount;i++){
small_g = 10000000.0;
neg_g_am = 3;
for(j=0;j<dim;j++){
gtmp[j]=0.0;
for(k=0;k<dim;k++)
gtmp[j]+=cartdir[k]* x->x_set_inv_matx[i][k+j*dim];
if(gtmp[j] < small_g)
small_g = gtmp[j];
if(gtmp[j]>= -0.01)
neg_g_am--;
}
if(small_g > big_sm_g && neg_g_am <= best_neg_g_am){
big_sm_g = small_g;
best_neg_g_am = neg_g_am;
winner_set=i;
g[0]=gtmp[0]; g[1]=gtmp[1];
ls[0]= x->x_lsset[i][0]; ls[1]= x->x_lsset[i][1];
if(dim==3){
g[2]=gtmp[2];
ls[2]= x->x_lsset[i][2];
} else {
g[2]=0.0;
ls[2]=0;
}
}
}
gains_modified=0;
for(i=0;i<dim;i++)
if(g[i]<-0.01){
gains_modified=1;
}
if(gains_modified != 1){
if(dim==3)
power=sqrt(g[0]*g[0] + g[1]*g[1] + g[2]*g[2]);
else
power=sqrt(g[0]*g[0] + g[1]*g[1]);
g[0] /= power;
g[1] /= power;
if(dim==3)
g[2] /= power;
final_gs[ls[0]-1] += g[0];
final_gs[ls[1]-1] += g[1];
/* BUG FIX: this was causing negative indices with 2 dimensions so I
* made it only try when using 3 dimensions.
* 2006-08-13 <hans@at.or.at> */
if(dim==3)
final_gs[ls[2]-1] += g[2];
}
}
static void spread_it(VBAP *x, float *final_gs)
/*
// apply the sound signal to multiple panning directions
// that causes some spreading.
// See theory in paper V. Pulkki "Uniform spreading of amplitude panned
// virtual sources" in WASPAA 99
*/
{
float vscartdir[3];
float spreaddir[16][3];
float spreadbase[16][3];
int i, spreaddirnum;
float power;
if(x->x_dimension == 3){
spreaddirnum=16;
angle_to_cart(x->x_azi,x->x_ele,vscartdir);
new_spread_dir(x, spreaddir[0], vscartdir, x->x_spread_base);
new_spread_base(x, spreaddir[0], vscartdir);
cross_prod(x->x_spread_base, vscartdir, spreadbase[1]); /* four orthogonal dirs */
cross_prod(spreadbase[1], vscartdir, spreadbase[2]);
cross_prod(spreadbase[2], vscartdir, spreadbase[3]);
/* four between them */
for(i=0;i<3;i++) spreadbase[4][i] = (x->x_spread_base[i] + spreadbase[1][i]) / 2.0;
for(i=0;i<3;i++) spreadbase[5][i] = (spreadbase[1][i] + spreadbase[2][i]) / 2.0;
for(i=0;i<3;i++) spreadbase[6][i] = (spreadbase[2][i] + spreadbase[3][i]) / 2.0;
for(i=0;i<3;i++) spreadbase[7][i] = (spreadbase[3][i] + x->x_spread_base[i]) / 2.0;
/* four at half spreadangle */
for(i=0;i<3;i++) spreadbase[8][i] = (vscartdir[i] + x->x_spread_base[i]) / 2.0;
for(i=0;i<3;i++) spreadbase[9][i] = (vscartdir[i] + spreadbase[1][i]) / 2.0;
for(i=0;i<3;i++) spreadbase[10][i] = (vscartdir[i] + spreadbase[2][i]) / 2.0;
for(i=0;i<3;i++) spreadbase[11][i] = (vscartdir[i] + spreadbase[3][i]) / 2.0;
/* four at quarter spreadangle */
for(i=0;i<3;i++) spreadbase[12][i] = (vscartdir[i] + spreadbase[8][i]) / 2.0;
for(i=0;i<3;i++) spreadbase[13][i] = (vscartdir[i] + spreadbase[9][i]) / 2.0;
for(i=0;i<3;i++) spreadbase[14][i] = (vscartdir[i] + spreadbase[10][i]) / 2.0;
for(i=0;i<3;i++) spreadbase[15][i] = (vscartdir[i] + spreadbase[11][i]) / 2.0;
additive_vbap(final_gs,spreaddir[0],x);
for(i=1;i<spreaddirnum;i++){
new_spread_dir(x, spreaddir[i], vscartdir, spreadbase[i]);
additive_vbap(final_gs,spreaddir[i],x);
}
} else if (x->x_dimension == 2) {
spreaddirnum=6;
angle_to_cart(x->x_azi - x->x_spread, 0, spreaddir[0]);
angle_to_cart(x->x_azi - x->x_spread/2, 0, spreaddir[1]);
angle_to_cart(x->x_azi - x->x_spread/4, 0, spreaddir[2]);
angle_to_cart(x->x_azi + x->x_spread/4, 0, spreaddir[3]);
angle_to_cart(x->x_azi + x->x_spread/2, 0, spreaddir[4]);
angle_to_cart(x->x_azi + x->x_spread, 0, spreaddir[5]);
for(i=0;i<spreaddirnum;i++)
additive_vbap(final_gs,spreaddir[i],x);
} else
return;
if(x->x_spread > 70)
for(i=0;i<x->x_ls_amount;i++){
final_gs[i] += (x->x_spread - 70) / 30.0 * (x->x_spread - 70) / 30.0 * 10.0;
}
for(i=0,power=0.0;i<x->x_ls_amount;i++){
power += final_gs[i] * final_gs[i];
}
power = sqrt(power);
for(i=0;i<x->x_ls_amount;i++){
final_gs[i] /= power;
}
}
static void vbap(float g[3], int ls[3], VBAP *x)
{
/* calculates gain factors using loudspeaker setup and given direction */
float power;
int i,j,k, gains_modified;
float small_g;
float big_sm_g, gtmp[3];
int winner_set=0;
float cartdir[3];
float new_cartdir[3];
float new_angle_dir[3];
int dim = x->x_dimension;
int neg_g_am, best_neg_g_am;
/* transfering the azimuth angle to a decent value */
while(x->x_azi > 180)
x->x_azi -= 360;
while(x->x_azi < -179)
x->x_azi += 360;
/* transferring the elevation to a decent value */
if(dim == 3){
while(x->x_ele > 180)
x->x_ele -= 360;
while(x->x_ele < -179)
x->x_ele += 360;
} else
x->x_ele = 0;
/* go through all defined loudspeaker sets and find the set which
// has all positive values. If such is not found, set with largest
// minimum value is chosen. If at least one of gain factors of one LS set is negative
// it means that the virtual source does not lie in that LS set. */
angle_to_cart(x->x_azi,x->x_ele,cartdir);
big_sm_g = -100000.0; /* initial value for largest minimum gain value */
best_neg_g_am=3; /* how many negative values in this set */
for(i=0;i<x->x_lsset_amount;i++){
small_g = 10000000.0;
neg_g_am = 3;
for(j=0;j<dim;j++){
gtmp[j]=0.0;
for(k=0;k<dim;k++)
gtmp[j]+=cartdir[k]* x->x_set_inv_matx[i][k+j*dim];
if(gtmp[j] < small_g)
small_g = gtmp[j];
if(gtmp[j]>= -0.01)
neg_g_am--;
}
if(small_g > big_sm_g && neg_g_am <= best_neg_g_am){
big_sm_g = small_g;
best_neg_g_am = neg_g_am;
winner_set=i;
g[0]=gtmp[0]; g[1]=gtmp[1];
ls[0]= x->x_lsset[i][0]; ls[1]= x->x_lsset[i][1];
if(dim==3){
g[2]=gtmp[2];
ls[2]= x->x_lsset[i][2];
} else {
g[2]=0.0;
ls[2]=0;
}
}
}
/* If chosen set produced a negative value, make it zero and
// calculate direction that corresponds to these new
// gain values. This happens when the virtual source is outside of
// all loudspeaker sets. */
if(dim==3){
gains_modified=0;
for(i=0;i<dim;i++)
if(g[i]<-0.01){
g[i]=0.0001;
gains_modified=1;
}
if(gains_modified==1){
new_cartdir[0] = x->x_set_matx[winner_set][0] * g[0]
+ x->x_set_matx[winner_set][1] * g[1]
+ x->x_set_matx[winner_set][2] * g[2];
new_cartdir[1] = x->x_set_matx[winner_set][3] * g[0]
+ x->x_set_matx[winner_set][4] * g[1]
+ x->x_set_matx[winner_set][5] * g[2];
new_cartdir[2] = x->x_set_matx[winner_set][6] * g[0]
+ x->x_set_matx[winner_set][7] * g[1]
+ x->x_set_matx[winner_set][8] * g[2];
cart_to_angle(new_cartdir,new_angle_dir);
x->x_azi = (float) (new_angle_dir[0] + 0.5);
x->x_ele = (float) (new_angle_dir[1] + 0.5);
}
}
power=sqrt(g[0]*g[0] + g[1]*g[1] + g[2]*g[2]);
g[0] /= power;
g[1] /= power;
g[2] /= power;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
static inline void VBAP_calc_gain_factors(VBAP * unit)
{
// adapted from vbap_bang
float azimuth = ZIN0(2);
float elevation = ZIN0(3);
float spread = ZIN0(4);
float *final_gs = unit->final_gs;
// only recalculate gain factors if inputs have changed
if((azimuth != unit->x_azi) || (elevation != unit->x_ele) || (spread != unit->x_spread)){
float g[3];
int ls[3];
int i;
unit->x_azi = azimuth;
unit->x_ele = elevation;
unit->x_spread = spread;
if(unit->x_lsset_available ==1){
vbap(g,ls, unit);
for(i=0;i<unit->x_ls_amount;i++)
final_gs[i]=0.0;
for(i=0;i<unit->x_dimension;i++){
final_gs[ls[i]-1]=g[i];
}
if(unit->x_spread != 0){
spread_it(unit,final_gs);
}
// for(i=0; i < unit->mNumOutputs; i++){
// printf("chan %i: %f\n", i, final_gs[i] );
// }
}
}
}
static void VBAP_next(VBAP *unit, int inNumSamples)
{
VBAP_calc_gain_factors(unit);
float *zin0 = ZIN(0);
float *final_gs = unit->final_gs;
// now scale the outputs
for (int i=0; i<(unit->mNumOutputs); ++i) {
float *out = ZOUT(i);
float chanamp = unit->m_chanamp[i];
float nextchanamp = final_gs[i];
if (nextchanamp == chanamp) {
if (nextchanamp == 0.f) {
ZClear(inNumSamples, out);
} else {
float *in = zin0;
LOOP1(inNumSamples,
ZXP(out) = ZXP(in) * nextchanamp;
)
}
} else {
float chanampslope = CALCSLOPE(nextchanamp, chanamp);
float *in = zin0;
LOOP1(inNumSamples,
ZXP(out) = ZXP(in) * chanamp;
chanamp += chanampslope;
)
unit->m_chanamp[i] = nextchanamp;
}
}
}
#ifdef NOVA_SIMD
static inline_functions void VBAP_next_simd(VBAP *unit, int inNumSamples)
{
VBAP_calc_gain_factors(unit);
float *in = IN(0);
float *final_gs = unit->final_gs;
// now scale the outputs
for (int i=0; i<(unit->mNumOutputs); ++i) {
float *out = OUT(i);
float chanamp = unit->m_chanamp[i];
float nextchanamp = final_gs[i];
if (nextchanamp == chanamp) {
if (nextchanamp == 0.f)
nova::zerovec_simd(out, inNumSamples);
else
nova::times_vec_simd(out, in, nextchanamp, inNumSamples);
} else {
float chanampslope = CALCSLOPE(nextchanamp, chanamp);
nova::times_vec_simd(out, in, nextchanamp, inNumSamples);
unit->m_chanamp[i] = nextchanamp;
}
}
}
#endif
static void VBAP_Ctor(VBAP* unit)
{
int numOutputs = unit->mNumOutputs, counter = 0, datapointer=0, setpointer=0, i;
// initialise interpolation levels and outputs
for (int i=0; i<numOutputs; ++i) {
unit->m_chanamp[i] = 0;
ZOUT0(i) = 0.f;
}
// [dim, numSpeakers, [chanOffsets 0-2, invmx 0-8, [lp1, lp2, lp2].x, sim.y, sim.z] * sets.size].flat
float fbufnum = ZIN0(1);
uint32 ibufnum = (uint32)fbufnum;
World *world = unit->mWorld;
SndBuf *buf;
if (ibufnum >= world->mNumSndBufs) {
int localBufNum = ibufnum - world->mNumSndBufs;
Graph *parent = unit->mParent;
if(localBufNum <= parent->localBufNum) {
buf = parent->mLocalSndBufs + localBufNum;
} else {
buf = world->mSndBufs;
}
} else {
buf = world->mSndBufs + ibufnum;
}
int numvals = buf->samples;
unit->x_dimension = (int)(buf->data[datapointer++]);
unit->x_ls_amount = (int)(buf->data[datapointer++]);
unit->x_azi = unit->x_ele = unit->x_spread = std::numeric_limits<float>::quiet_NaN();
unit->final_gs = (float*)RTAlloc(unit->mWorld, numOutputs * sizeof(float));
unit->x_lsset_available = 1;
if(((unit->x_dimension != 2) && (unit->x_dimension != 3)) || (unit->x_ls_amount < 2)) {
printf("vbap: Error in loudspeaker data. Bufnum: %i\n", (int)fbufnum);
unit->x_lsset_available = 0;
// do something else here
}
if(unit->x_dimension == 3)
counter = (numvals - 2) / ((unit->x_dimension * unit->x_dimension*2) + unit->x_dimension);
if(unit->x_dimension == 2)
counter = (numvals - 2) / ((unit->x_dimension * unit->x_dimension) + unit->x_dimension);
unit->x_lsset_amount=counter;
if(counter<=0){
printf("vbap: Error in loudspeaker data. Bufnum: %i\n", (int)fbufnum);
unit->x_lsset_available=0;
// return;
}
// probably sets should be created with rtalloc
while(counter-- > 0){
for(i=0; i < unit->x_dimension; i++){
unit->x_lsset[setpointer][i]=(int)buf->data[datapointer++];
}
for(i=0; i < unit->x_dimension*unit->x_dimension; i++){
unit->x_set_inv_matx[setpointer][i]=buf->data[datapointer++];
/* post("%d",deb++); */
}
if(unit->x_dimension == 3){
for(i=0; i < unit->x_dimension*unit->x_dimension; i++){
unit->x_set_matx[setpointer][i]=buf->data[datapointer++];
}
}
setpointer++;
}
//printf("vbap: Loudspeaker setup configured!\n");
#ifdef NOVA_SIMD
if (!(BUFLENGTH & 15))
SETCALC(VBAP_next_simd);
else
#endif
SETCALC(VBAP_next);
if (unit->x_lsset_available == 1) {
unit->x_spread_base[0] = 0.0;
unit->x_spread_base[1] = 1.0;
unit->x_spread_base[2] = 0.0;
VBAP_next(unit, 1); // calculate initial gain factors && compute initial sample
} else {
ZOUT0(0) = 0;
// if the ls data was bad, just set every gain to 0 and bail
for(i=0;i<unit->x_ls_amount;i++)
unit->final_gs[i]=0.f;
}
}
static void VBAP_Dtor(VBAP* unit)
{
RTFree(unit->mWorld, unit->final_gs);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// for circular smoothing of input signals
static void CircleRamp_next(CircleRamp *unit, int inNumSamples)
{
float *out = ZOUT(0);
float *in = IN(0);
float period = ZIN0(1);
double circmin = (double)ZIN0(2);
double circmax = (double)ZIN0(3);
double circrange = circmax - circmin;
double slope = unit->m_slope;
double level = unit->m_level;
int counter = unit->m_counter;
int remain = inNumSamples;
while (remain) {
int nsmps = sc_min(remain, counter);
LOOP1(nsmps,
ZXP(out) = level;
level = sc_wrap(level + slope, circmin, circmax);
);
in += nsmps;
counter -= nsmps;
remain -= nsmps;
if (counter <= 0) {
counter = (int)(period * SAMPLERATE);
counter = sc_max(1, counter);
double diff = sc_wrap((double)(*in), circmin, circmax) - level;
// go the shortest way around...
if(fabs(diff) > (circrange * 0.5)){
int invsign = diff < 0.0 ? 1 : -1;
diff = (circrange - fabs(diff)) * invsign;
}
slope = diff / counter;
}
}
unit->m_level = level;
unit->m_slope = slope;
unit->m_counter = counter;
}
static void CircleRamp_next_1(CircleRamp *unit, int inNumSamples)
{
float *out = OUT(0);
double circmin = (double)ZIN0(2);
double circmax = (double)ZIN0(3);
double circrange = circmax - circmin;
*out = unit->m_level;
unit->m_level = sc_wrap(unit->m_level + unit->m_slope, circmin, circmax);
if (--unit->m_counter <= 0) {
float in = ZIN0(0);
float period = ZIN0(1);
int counter = (int)(period * SAMPLERATE);
unit->m_counter = counter = sc_max(1, counter);
double diff = sc_wrap((double)in, circmin, circmax) - unit->m_level;
// go the shortest way around...
if(fabs(diff) > (circrange * 0.5)){
int invsign = diff < 0.0 ? 1 : -1;
diff = (circrange - fabs(diff)) * invsign;
}
unit->m_slope = diff / counter;
}
}
static void CircleRamp_Ctor(CircleRamp* unit)
{
if (BUFLENGTH == 1) {
SETCALC(CircleRamp_next_1);
//printf("next1\n");
} else {
SETCALC(CircleRamp_next);
//printf("next\n");
}
unit->m_counter = 1;
unit->m_level = sc_wrap(ZIN0(0), ZIN0(2), ZIN0(3));
unit->m_slope = 0.f;
ZOUT0(0) = unit->m_level;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
PluginLoad(VBAP)
{
ft = inTable;
DefineDtorCantAliasUnit(VBAP);
DefineSimpleUnit(CircleRamp);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
|