File: vbap.sc

package info (click to toggle)
supercollider-sc3-plugins 3.7.1~repack-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 14,332 kB
  • ctags: 11,704
  • sloc: cpp: 140,180; lisp: 14,746; ansic: 2,133; xml: 86; makefile: 82; haskell: 21; sh: 8
file content (582 lines) | stat: -rw-r--r-- 17,405 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
/*
VBAP created by Ville Pukki
This version ported from ver 0.99 PD code by Scott Wilson
Development funded in part by the AHRC http://www.ahrc.ac.uk

Copyright

This software is being provided to you, the licensee, by Ville Pulkki,
under the following license. By obtaining, using and/or copying this
software, you agree that you have read, understood, and will comply
with these terms and conditions: Permission to use, copy, modify and
distribute, including the right to grant others rights to distribute
at any tier, this software and its documentation for any purpose and
without fee or royalty is hereby granted, provided that you agree to
comply with the following copyright notice and statements, including
the disclaimer, and that the same appear on ALL copies of the software
and documentation, including modifications that you make for internal
use or for distribution:


 Written by Ville Pulkki 1999
 Helsinki University of Technology
 and
 Unversity of California at Berkeley

*/


VBAPSpeakerArray {
	classvar <>maxNumSpeakers = 55, minSideLength = 0.01;
	var <dim, <speakers, <numSpeakers, sets;

	*new { |dim, directions|
		^super.newCopyArgs(dim).initFromDirections(directions);
	}

	initFromDirections { |directions|
		if(dim == 2, {directions = directions.collect({|azi| [azi, 0]});});
		numSpeakers = directions.size;
		speakers = directions.collect({|dir| VBAPSpeaker.new(dir[0], dir[1]) });
		this.anglesToCartesian;
	}

	anglesToCartesian {
		var atorad = (2 * 3.1415927 / 360);
		speakers.do({ |spkr|
			var azi, ele;
			azi = spkr.azi;
			ele = spkr.ele;
			spkr.x = cos(azi * atorad) * cos(ele * atorad);
			spkr.y = sin(azi * atorad) * cos(ele * atorad);
			spkr.z = sin(ele * atorad);
		});
	}

	getSetsAndMatrices {
		/* calculate and print out chosen loudspeaker sets and corresponding  matrices */

		if(dim == 3, {
			this.choose_ls_triplets;
			^this.calculate_3x3_matrixes;
		}, {
			if(dim == 2, {^this.choose_ls_tuplets});
		});
		postln("Error in loudspeaker direction data");
		^nil;
	}

	loadToBuffer {|server|
		^Buffer.loadCollection(server, this.getSetsAndMatrices);
	}


	     /* Selects the loudspeaker triplets, and
      calculates the inversion matrices for each selected triplet.
     A line (connection) is drawn between each loudspeaker. The lines
     denote the sides of the triangles. The triangles should not be
     intersecting. All crossing connections are searched and the
     longer connection is erased. This yields non-intesecting triangles,
     which can be used in panning.
     See theory in paper Pulkki, V. Lokki, T. "Creating Auditory Displays
     with Multiple Loudspeakers Using VBAP: A Case Study with
     DIVA Project" in International Conference on
     Auditory Displays -98.*/

	choose_ls_triplets {
		var i1, j1, k1, m, li, table_size;
		var vb1,vb2,tmp_vec; // instances of VBAPSpeaker
		var connections;
		var angles;
		var sorted_angles;
		var distance_table;
		var distance_table_i;
		var distance_table_j;
		var distance;

		// init vars defined above
		connections = Array.fill(maxNumSpeakers, {Array.newClear(maxNumSpeakers)});
		angles = Array.newClear(maxNumSpeakers);
		sorted_angles = Array.newClear(maxNumSpeakers);
		distance_table = Array.newClear((maxNumSpeakers * (maxNumSpeakers - 1)) / 2);
		distance_table_i = Array.newClear((maxNumSpeakers * (maxNumSpeakers - 1)) / 2);
		distance_table_j = Array.newClear((maxNumSpeakers * (maxNumSpeakers - 1)) / 2);

		sets = nil;
		for(0.0, numSpeakers -1, {|i|
			for(i+1.0, numSpeakers -1, {|j|
				for(j+1.0, numSpeakers -1, {|k|
					if(this.vol_p_side_lgth(i,j,k) > minSideLength, {
						connections[i][j]=1;
						connections[j][i]=1;
						connections[i][k]=1;
						connections[k][i]=1;
						connections[j][k]=1;
						connections[k][j]=1;
						//"i: % j: %, k: %\n".postf(i, j, k);
						sets = sets.add(VBAPSpeakerSet([i,j,k]));
					});
				});
			});
		});

		/*calculate distancies between all lss and sorting them*/
		table_size = ((numSpeakers - 1) * (numSpeakers)) / 2;
		for(0, table_size -1, { |i| distance_table[i] = 100000.0 });
		for(0.0, numSpeakers - 1, { |i|
			for(i+1, numSpeakers - 1, {|j|
				var k;
				if(connections[i][j] == 1, {
					distance = abs(this.vec_angle(speakers[i],speakers[j]));
					k=0;
					while({distance_table[k] < distance}, {k = k+1});
					forBy(table_size - 1, k + 1, -1,{ |l|
						distance_table[l] = distance_table[l-1];
						distance_table_i[l] = distance_table_i[l-1];
						distance_table_j[l] = distance_table_j[l-1];
					});
					distance_table[k] = distance;
					distance_table_i[k] = i;
					distance_table_j[k] = j;
			}, {table_size = table_size - 1;});
			});
		});

	  /* disconnecting connections which are crossing shorter ones,
	     starting from shortest one and removing all that cross it,
	     and proceeding to next shortest */
		for(0.0, table_size - 1, {|i|
			var fst_ls, sec_ls;
			fst_ls = distance_table_i[i];
			sec_ls = distance_table_j[i];
			if(connections[fst_ls][sec_ls] == 1, {
				for(0.0, numSpeakers - 1, {|j|
					for(j+1.0, numSpeakers - 1, {|k|
						if( (j!=fst_ls) && (k != sec_ls) && (k!=fst_ls) && (j != sec_ls), {
							if(this.lines_intersect(fst_ls, sec_ls, j,k), {
								connections[j][k] = 0;
								connections[k][j] = 0;
							});
						});
					});
				});
			});
		});

	  /* remove triangles which had crossing sides
	     with smaller triangles or include loudspeakers*/
		//"triplet_amount before stripping: %\n".postf(sets.size);
		sets = sets.reject({|set|
			i1 = set.chanOffsets[0];
			j1 = set.chanOffsets[1];
			k1 = set.chanOffsets[2];
			(connections[i1][j1] == 0) || (connections[i1][k1] == 0) || (connections[j1][k1] == 0)
				|| this.any_ls_inside_triplet(i1,j1,k1);
		});
		//"triplet_amount after stripping: %\n".postf(sets.size);
	}

	lines_intersect { |i, j, k, l|
	     /* checks if two lines intersect on 3D sphere
	       */
		var v1, v2, v3, neg_v3; // VBAPSpeaker
		var angle;
		var dist_ij,dist_kl,dist_iv3,dist_jv3,dist_inv3,dist_jnv3;
		var dist_kv3,dist_lv3,dist_knv3,dist_lnv3;

		v1 = this.unq_cross_prod(speakers[i], speakers[j]);
		v2 = this.unq_cross_prod(speakers[k], speakers[l]);
		v3 = this.unq_cross_prod(v1, v2);

		neg_v3 = VBAPSpeaker.new;
		neg_v3.x= 0.0 - v3.x;
		neg_v3.y= 0.0 - v3.y;
		neg_v3.z= 0.0 - v3.z;

		dist_ij = (this.vec_angle(speakers[i], speakers[j]));
		dist_kl = (this.vec_angle(speakers[k], speakers[l]));
		dist_iv3 = (this.vec_angle(speakers[i], v3));
		dist_jv3 = (this.vec_angle(v3, speakers[j]));
		dist_inv3 = (this.vec_angle(speakers[i], neg_v3));
		dist_jnv3 = (this.vec_angle(neg_v3, speakers[j]));
		dist_kv3 = (this.vec_angle(speakers[k], v3));
		dist_lv3 = (this.vec_angle(v3, speakers[l]));
		dist_knv3 = (this.vec_angle(speakers[k], neg_v3));
		dist_lnv3 = (this.vec_angle(neg_v3, speakers[l]));

		/* if one of loudspeakers is close to crossing point, don't do anything*/
		if((abs(dist_iv3) <= 0.01) || (abs(dist_jv3) <= 0.01) ||
			(abs(dist_kv3) <= 0.01) || (abs(dist_lv3) <= 0.01) ||
			(abs(dist_inv3) <= 0.01) || (abs(dist_jnv3) <= 0.01) ||
			(abs(dist_knv3) <= 0.01) || (abs(dist_lnv3) <= 0.01), {^false});

		/* if crossing point is on line between both loudspeakers return 1 */
		if (((abs(dist_ij - (dist_iv3 + dist_jv3)) <= 0.01 ) &&
	       (abs(dist_kl - (dist_kv3 + dist_lv3))  <= 0.01)) ||
	      ((abs(dist_ij - (dist_inv3 + dist_jnv3)) <= 0.01)  &&
	       (abs(dist_kl - (dist_knv3 + dist_lnv3)) <= 0.01 )), { ^true}, {^false});

	}



  /* calculate volume of the parallelepiped defined by the loudspeaker
     direction vectors and divide it with total length of the triangle sides.
     This is used when removing too narrow triangles. */
	vol_p_side_lgth { |i, j, k|
		var volper, lgth;
		var xprod;

		xprod = this.unq_cross_prod(speakers[i], speakers[j]);
		volper = abs(this.vec_prod(xprod, speakers[k]));
		lgth = (abs(this.vec_angle(speakers[i], speakers[j]))
		+ abs(this.vec_angle(speakers[i], speakers[k]))
		+ abs(this.vec_angle(speakers[j], speakers[k])));
		if(lgth > 0.00001, { ^(volper / lgth)}, { ^0.0 });
	}

	//unq_cross_prod(t_ls v1,t_ls v2, t_ls *res)
	/* vector cross product */
	unq_cross_prod { |v1, v2|
		var length, result;
		result = VBAPSpeaker.new;
		result.x = (v1.y * v2.z ) - (v1.z * v2.y);
		result.y = (v1.z * v2.x ) - (v1.x * v2.z);
		result.z = (v1.x * v2.y ) - (v1.y * v2.x);
		length = this.vec_length(result);
		result.x = result.x / length;
		result.y = result.y / length;
		result.z = result.z / length;
		^result;
	}

	vec_length { |v1|
		/* length of a vector */
		^(sqrt(v1.x.squared + v1.y.squared + v1.z.squared));
	}

	vec_prod {|v1, v2|
		/* vector dot product */
		^((v1.x*v2.x) + (v1.y*v2.y) + (v1.z*v2.z));
	}

	vec_angle{ |v1, v2|
		/* angle between two loudspeakers */
		var inner;
		inner = ((v1.x*v2.x) + (v1.y*v2.y) + (v1.z*v2.z)) /
			(this.vec_length(v1) * this.vec_length(v2));
		if(inner > 1.0, {inner = 1.0});
		if (inner < -1.0, {inner = -1.0});
		^abs(acos(inner));
	}

	any_ls_inside_triplet { |a, b, c| // speakers, numSpeakers
		/* returns true if there is loudspeaker(s) inside given ls triplet */
		var invdet;
		var lp1, lp2, lp3;
		var invmx;
		var tmp;
		var any_ls_inside, this_inside;

		lp1 =  speakers[a];
		lp2 =  speakers[b];
		lp3 =  speakers[c];

		invmx = Array.newClear(9);

		/* matrix inversion */
		invdet = 1.0 / (  lp1.x * ((lp2.y * lp3.z) - (lp2.z * lp3.y))
                    - (lp1.y * ((lp2.x * lp3.z) - (lp2.z * lp3.x)))
                    + (lp1.z * ((lp2.x * lp3.y) - (lp2.y * lp3.x))));

		invmx[0] = ((lp2.y * lp3.z) - (lp2.z * lp3.y)) * invdet;
		invmx[3] = ((lp1.y * lp3.z) - (lp1.z * lp3.y)) * invdet.neg;
		invmx[6] = ((lp1.y * lp2.z) - (lp1.z * lp2.y)) * invdet;
		invmx[1] = ((lp2.x * lp3.z) - (lp2.z * lp3.x)) * invdet.neg;
		invmx[4] = ((lp1.x * lp3.z) - (lp1.z * lp3.x)) * invdet;
		invmx[7] = ((lp1.x * lp2.z) - (lp1.z * lp2.x)) * invdet.neg;
		invmx[2] = ((lp2.x * lp3.y) - (lp2.y * lp3.x)) * invdet;
		invmx[5] = ((lp1.x * lp3.y) - (lp1.y * lp3.x)) * invdet.neg;
		invmx[8] = ((lp1.x * lp2.y) - (lp1.y * lp2.x)) * invdet;

		any_ls_inside = false;
		for(0, numSpeakers - 1, {|i|
			if((i != a) && (i != b) && (i != c), {
				this_inside = true;
				for(0, 2, {|j|
					tmp = speakers[i].x * invmx[0 + (j*3)];
					tmp = speakers[i].y * invmx[1 + (j*3)] + tmp;
					tmp = speakers[i].z * invmx[2 + (j*3)] + tmp;
					if(tmp < -0.001, {this_inside = false;});
				});
			if(this_inside, {any_ls_inside = true});
			});
		});
	  ^any_ls_inside;
	}

	calculate_3x3_matrixes {
     /* Calculates the inverse matrices for 3D */

		var invdet;
		var lp1, lp2, lp3;
		var invmx;
		var triplet_amount = 0, pointer,list_length=0;
		var result;

		if(sets.isNil, {
			postln("define-loudspeakers: Not valid 3-D configuration");
			^nil;
		});

		triplet_amount = sets.size;
		//"triplet_amount: %\n".postf(triplet_amount);
		list_length = triplet_amount * 21 + 2;
		result = FloatArray.newClear(list_length);

		result[0] = dim;
		result[1] = numSpeakers;
		pointer=2;

		sets.do({|set|
			lp1 = speakers[set.chanOffsets[0]];
			lp2 = speakers[set.chanOffsets[1]];
			lp3 = speakers[set.chanOffsets[2]];

			invmx = FloatArray.newClear(9);

			//"lp1x: % lp1y: % lp1z: %\n".postf(lp1.x, lp1.y, lp1.z);
			//"lp2x: % lp2y: % lp2z: %\n".postf(lp2.x, lp2.y, lp2.z);
			//"lp3x: % lp3y: % lp3z: %\n".postf(lp3.x, lp3.y, lp3.z);
			invdet = 1.0 / (  (lp1.x * ((lp2.y * lp3.z) - (lp2.z * lp3.y)))
                    - (lp1.y * ((lp2.x * lp3.z) - (lp2.z * lp3.x)))
                    + (lp1.z * ((lp2.x * lp3.y) - (lp2.y * lp3.x))));

              //"invdet: %\n".postf(invdet);

			invmx[0] = ((lp2.y * lp3.z) - (lp2.z * lp3.y)) * invdet;
			invmx[3] = ((lp1.y * lp3.z) - (lp1.z * lp3.y)) * invdet.neg;
			invmx[6] = ((lp1.y * lp2.z) - (lp1.z * lp2.y)) * invdet;
			invmx[1] = ((lp2.x * lp3.z) - (lp2.z * lp3.x)) * invdet.neg;
			invmx[4] = ((lp1.x * lp3.z) - (lp1.z * lp3.x)) * invdet;
			invmx[7] = ((lp1.x * lp2.z) - (lp1.z * lp2.x)) * invdet.neg;
			invmx[2] = ((lp2.x * lp3.y) - (lp2.y * lp3.x)) * invdet;
			invmx[5] = ((lp1.x * lp3.y) - (lp1.y * lp3.x)) * invdet.neg;
			invmx[8] = ((lp1.x * lp2.y) - (lp1.y * lp2.x)) * invdet;
			set.inv_mx = invmx;
			3.do({|i|
				result[pointer] = set.chanOffsets[i] + 1;
				pointer = pointer + 1;
			});
			9.do({|i|
				result[pointer] = invmx[i];
				pointer = pointer + 1;
			});
			result[pointer] = lp1.x; pointer = pointer + 1;
			result[pointer] = lp2.x; pointer = pointer + 1;
			result[pointer] = lp3.x; pointer = pointer + 1;
			result[pointer] = lp1.y; pointer = pointer + 1;
			result[pointer] = lp2.y; pointer = pointer + 1;
			result[pointer] = lp3.y; pointer = pointer + 1;
			result[pointer] = lp1.z; pointer = pointer + 1;
			result[pointer] = lp2.z; pointer = pointer + 1;
			result[pointer] = lp3.z; pointer = pointer + 1;

		});
		^result;
	}

	choose_ls_tuplets {
     /* selects the loudspeaker pairs, calculates the inversion
        matrices and stores the data to a global array*/
		var atorad = (2 * 3.1415927 / 360);
		var w1,w2;
		var p1,p2;
		var sorted_lss;
		var exist;
		var amount=0;
		var inv_mat;
		var ls_table;
		var list_length;
		var result;
		var pointer;

		exist = Array.newClear(maxNumSpeakers);
		inv_mat = Array.fill(maxNumSpeakers, {Array.newClear(4)});

		for(0, maxNumSpeakers - 1, {|i|
			exist[i]=0;
		});

		/* sort loudspeakers according their azimuth angle */
		sorted_lss = this.sort_2D_lss;

		/* adjacent loudspeakers are the loudspeaker pairs to be used.*/
		for(0, numSpeakers -2, {|i|
			if((speakers[sorted_lss[i+1]].azi - speakers[sorted_lss[i]].azi) <= (180 - 10), {
				if(this.calc_2D_inv_tmatrix(speakers[sorted_lss[i]].azi,
					speakers[sorted_lss[i+1]].azi, inv_mat[i]),{
					exist[i]=1;
					amount = amount + 1;
				});
			});
		});

		if(((6.283 - speakers[sorted_lss[numSpeakers-1]].azi)
			+ speakers[sorted_lss[0]].azi) <= (180 -  10), {
			if(this.calc_2D_inv_tmatrix(speakers[sorted_lss[numSpeakers-1]].azi,
                           speakers[sorted_lss[0]].azi,
                           inv_mat[numSpeakers-1]), {
				exist[numSpeakers-1]=1;
				amount = amount + 1;
			});
		});

		/* Output */
		list_length= amount * 6 + 2;
		result = Array.newClear(list_length);

		result[0] = dim;
		result[1] = numSpeakers;
		pointer=2;

		for(0, numSpeakers - 2, {|i|
			if(exist[i] == 1, {
				result[pointer] = sorted_lss[i]+1;
				pointer = pointer + 1;
				result[pointer] = sorted_lss[i+1]+1;
				pointer = pointer + 1;
				for(0, 3, {|j|
					result[pointer] = inv_mat[i][j];
					pointer = pointer + 1;
				});
			});
		});
		if(exist[numSpeakers-1] == 1, {
			result[pointer] = sorted_lss[numSpeakers-1]+1;
			pointer = pointer + 1;
			result[pointer] = sorted_lss[0]+1;
			pointer = pointer + 1;
			for(0, 3, {|j|
				result[pointer] = inv_mat[numSpeakers-1][j];
				pointer = pointer + 1;
			});
		});
		^result;
	}

	sort_2D_lss {
		/* sort loudspeakers according to azimuth angle */

		var i,j,index;
		var tmp, tmp_azi;
		var rad2ang = 360.0 / ( 2 * pi );

		var x,y;
		var sorted_lss;

		sorted_lss = Array.newClear(maxNumSpeakers);

		/* Transforming angles between -180 and 180 */
		for (0, numSpeakers - 1, {|i|
			speakers[i].azi = acos( speakers[i].x) * rad2ang;
			if (abs(speakers[i].y) <= 0.001, {
				tmp = 1.0;
			}, {
				tmp = speakers[i].y / abs(speakers[i].y);
			});
			speakers[i].azi = speakers[i].azi * tmp;
		});
		for (0, numSpeakers - 1, {|i|
			tmp = 2000;
			for (0, numSpeakers - 1, {|j|
				if (speakers[j].azi <= tmp, {
					tmp = speakers[j].azi;
					index = j;
				});
			});
			sorted_lss[i]=index;
			tmp_azi = (speakers[index].azi);
			speakers[index].azi = (tmp_azi + 4000.0);
		});
		for (0, numSpeakers - 1, {|i|
			tmp_azi = (speakers[i].azi);
			speakers[i].azi = (tmp_azi - 4000.0);
		});
		^sorted_lss;
	}

	calc_2D_inv_tmatrix { |azi1, azi2, inv_mat|
	/* calculate inverse 2x2 matrix */

		var x1,x2,x3,x4;
		var y1,y2,y3,y4;
		var det;
		var rad2ang = 360.0 / ( 2  * 3.141592 );

		x1 = cos(azi1 / rad2ang);
		x2 = sin(azi1 / rad2ang);
		x3 = cos(azi2 / rad2ang);
		x4 = sin(azi2 / rad2ang);
		det = (x1 * x4) - ( x3 * x2 );
		if(abs(det) <= 0.001, {
			inv_mat[0] = 0.0;
			inv_mat[1] = 0.0;
			inv_mat[2] = 0.0;
			inv_mat[3] = 0.0;
			^false;
		}, {
			inv_mat[0] =   (x4 / det);
			inv_mat[1] =  (x3.neg / det);
			inv_mat[2] =   (x2.neg / det);
			inv_mat[3] =    (x1 / det);
			^true;
		})
	}


}

VBAPSpeaker {

	// setters are 'private'

	var <>x, <>y, <>z;

	// spherical coords, angles (in degrees) from a central point
	var <>azi; 	// from median plane +/- 180 deg
	var <>ele; 	// above azimuthal plane

	*new {|azi, ele|
		^super.new.init(azi, ele);
	}

	init{|azimuth, elevation, radius|
		azi = azimuth;
		ele = elevation;
	}
}

VBAPSpeakerSet { // triplet or pair
	var <chanOffsets;
	var <>inv_mx;

	*new {|chanOffsets|
		^super.newCopyArgs(chanOffsets);
	}
}

VBAP : MultiOutUGen {
	// spread 0 - 100
	*ar { arg numChans, in, bufnum, azimuth = 0.0, elevation = 1.0, spread = 0.0;
		^this.multiNew('audio', numChans, in, bufnum, azimuth, elevation, spread )
	}
	*kr { arg numChans, in, bufnum, azimuth = 0.0, elevation = 1.0, spread = 0.0;
		^this.multiNew('control', numChans, in, bufnum, azimuth, elevation, spread )
	}
	init { arg numChans ... theInputs;
		inputs = theInputs;
		channels = Array.fill(numChans, { arg i; OutputProxy(rate,this, i) });
		^channels
	}
}