1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
|
/*
VBAP created by Ville Pukki
This version ported from ver 0.99 PD code by Scott Wilson
Development funded in part by the AHRC http://www.ahrc.ac.uk
Copyright
This software is being provided to you, the licensee, by Ville Pulkki,
under the following license. By obtaining, using and/or copying this
software, you agree that you have read, understood, and will comply
with these terms and conditions: Permission to use, copy, modify and
distribute, including the right to grant others rights to distribute
at any tier, this software and its documentation for any purpose and
without fee or royalty is hereby granted, provided that you agree to
comply with the following copyright notice and statements, including
the disclaimer, and that the same appear on ALL copies of the software
and documentation, including modifications that you make for internal
use or for distribution:
Written by Ville Pulkki 1999
Helsinki University of Technology
and
Unversity of California at Berkeley
*/
VBAPSpeakerArray {
classvar <>maxNumSpeakers = 55, minSideLength = 0.01;
var <dim, <speakers, <numSpeakers, sets;
*new { |dim, directions|
^super.newCopyArgs(dim).initFromDirections(directions);
}
initFromDirections { |directions|
if(dim == 2, {directions = directions.collect({|azi| [azi, 0]});});
numSpeakers = directions.size;
speakers = directions.collect({|dir| VBAPSpeaker.new(dir[0], dir[1]) });
this.anglesToCartesian;
}
anglesToCartesian {
var atorad = (2 * 3.1415927 / 360);
speakers.do({ |spkr|
var azi, ele;
azi = spkr.azi;
ele = spkr.ele;
spkr.x = cos(azi * atorad) * cos(ele * atorad);
spkr.y = sin(azi * atorad) * cos(ele * atorad);
spkr.z = sin(ele * atorad);
});
}
getSetsAndMatrices {
/* calculate and print out chosen loudspeaker sets and corresponding matrices */
if(dim == 3, {
this.choose_ls_triplets;
^this.calculate_3x3_matrixes;
}, {
if(dim == 2, {^this.choose_ls_tuplets});
});
postln("Error in loudspeaker direction data");
^nil;
}
loadToBuffer {|server|
^Buffer.loadCollection(server, this.getSetsAndMatrices);
}
/* Selects the loudspeaker triplets, and
calculates the inversion matrices for each selected triplet.
A line (connection) is drawn between each loudspeaker. The lines
denote the sides of the triangles. The triangles should not be
intersecting. All crossing connections are searched and the
longer connection is erased. This yields non-intesecting triangles,
which can be used in panning.
See theory in paper Pulkki, V. Lokki, T. "Creating Auditory Displays
with Multiple Loudspeakers Using VBAP: A Case Study with
DIVA Project" in International Conference on
Auditory Displays -98.*/
choose_ls_triplets {
var i1, j1, k1, m, li, table_size;
var vb1,vb2,tmp_vec; // instances of VBAPSpeaker
var connections;
var angles;
var sorted_angles;
var distance_table;
var distance_table_i;
var distance_table_j;
var distance;
// init vars defined above
connections = Array.fill(maxNumSpeakers, {Array.newClear(maxNumSpeakers)});
angles = Array.newClear(maxNumSpeakers);
sorted_angles = Array.newClear(maxNumSpeakers);
distance_table = Array.newClear((maxNumSpeakers * (maxNumSpeakers - 1)) / 2);
distance_table_i = Array.newClear((maxNumSpeakers * (maxNumSpeakers - 1)) / 2);
distance_table_j = Array.newClear((maxNumSpeakers * (maxNumSpeakers - 1)) / 2);
sets = nil;
for(0.0, numSpeakers -1, {|i|
for(i+1.0, numSpeakers -1, {|j|
for(j+1.0, numSpeakers -1, {|k|
if(this.vol_p_side_lgth(i,j,k) > minSideLength, {
connections[i][j]=1;
connections[j][i]=1;
connections[i][k]=1;
connections[k][i]=1;
connections[j][k]=1;
connections[k][j]=1;
//"i: % j: %, k: %\n".postf(i, j, k);
sets = sets.add(VBAPSpeakerSet([i,j,k]));
});
});
});
});
/*calculate distancies between all lss and sorting them*/
table_size = ((numSpeakers - 1) * (numSpeakers)) / 2;
for(0, table_size -1, { |i| distance_table[i] = 100000.0 });
for(0.0, numSpeakers - 1, { |i|
for(i+1, numSpeakers - 1, {|j|
var k;
if(connections[i][j] == 1, {
distance = abs(this.vec_angle(speakers[i],speakers[j]));
k=0;
while({distance_table[k] < distance}, {k = k+1});
forBy(table_size - 1, k + 1, -1,{ |l|
distance_table[l] = distance_table[l-1];
distance_table_i[l] = distance_table_i[l-1];
distance_table_j[l] = distance_table_j[l-1];
});
distance_table[k] = distance;
distance_table_i[k] = i;
distance_table_j[k] = j;
}, {table_size = table_size - 1;});
});
});
/* disconnecting connections which are crossing shorter ones,
starting from shortest one and removing all that cross it,
and proceeding to next shortest */
for(0.0, table_size - 1, {|i|
var fst_ls, sec_ls;
fst_ls = distance_table_i[i];
sec_ls = distance_table_j[i];
if(connections[fst_ls][sec_ls] == 1, {
for(0.0, numSpeakers - 1, {|j|
for(j+1.0, numSpeakers - 1, {|k|
if( (j!=fst_ls) && (k != sec_ls) && (k!=fst_ls) && (j != sec_ls), {
if(this.lines_intersect(fst_ls, sec_ls, j,k), {
connections[j][k] = 0;
connections[k][j] = 0;
});
});
});
});
});
});
/* remove triangles which had crossing sides
with smaller triangles or include loudspeakers*/
//"triplet_amount before stripping: %\n".postf(sets.size);
sets = sets.reject({|set|
i1 = set.chanOffsets[0];
j1 = set.chanOffsets[1];
k1 = set.chanOffsets[2];
(connections[i1][j1] == 0) || (connections[i1][k1] == 0) || (connections[j1][k1] == 0)
|| this.any_ls_inside_triplet(i1,j1,k1);
});
//"triplet_amount after stripping: %\n".postf(sets.size);
}
lines_intersect { |i, j, k, l|
/* checks if two lines intersect on 3D sphere
*/
var v1, v2, v3, neg_v3; // VBAPSpeaker
var angle;
var dist_ij,dist_kl,dist_iv3,dist_jv3,dist_inv3,dist_jnv3;
var dist_kv3,dist_lv3,dist_knv3,dist_lnv3;
v1 = this.unq_cross_prod(speakers[i], speakers[j]);
v2 = this.unq_cross_prod(speakers[k], speakers[l]);
v3 = this.unq_cross_prod(v1, v2);
neg_v3 = VBAPSpeaker.new;
neg_v3.x= 0.0 - v3.x;
neg_v3.y= 0.0 - v3.y;
neg_v3.z= 0.0 - v3.z;
dist_ij = (this.vec_angle(speakers[i], speakers[j]));
dist_kl = (this.vec_angle(speakers[k], speakers[l]));
dist_iv3 = (this.vec_angle(speakers[i], v3));
dist_jv3 = (this.vec_angle(v3, speakers[j]));
dist_inv3 = (this.vec_angle(speakers[i], neg_v3));
dist_jnv3 = (this.vec_angle(neg_v3, speakers[j]));
dist_kv3 = (this.vec_angle(speakers[k], v3));
dist_lv3 = (this.vec_angle(v3, speakers[l]));
dist_knv3 = (this.vec_angle(speakers[k], neg_v3));
dist_lnv3 = (this.vec_angle(neg_v3, speakers[l]));
/* if one of loudspeakers is close to crossing point, don't do anything*/
if((abs(dist_iv3) <= 0.01) || (abs(dist_jv3) <= 0.01) ||
(abs(dist_kv3) <= 0.01) || (abs(dist_lv3) <= 0.01) ||
(abs(dist_inv3) <= 0.01) || (abs(dist_jnv3) <= 0.01) ||
(abs(dist_knv3) <= 0.01) || (abs(dist_lnv3) <= 0.01), {^false});
/* if crossing point is on line between both loudspeakers return 1 */
if (((abs(dist_ij - (dist_iv3 + dist_jv3)) <= 0.01 ) &&
(abs(dist_kl - (dist_kv3 + dist_lv3)) <= 0.01)) ||
((abs(dist_ij - (dist_inv3 + dist_jnv3)) <= 0.01) &&
(abs(dist_kl - (dist_knv3 + dist_lnv3)) <= 0.01 )), { ^true}, {^false});
}
/* calculate volume of the parallelepiped defined by the loudspeaker
direction vectors and divide it with total length of the triangle sides.
This is used when removing too narrow triangles. */
vol_p_side_lgth { |i, j, k|
var volper, lgth;
var xprod;
xprod = this.unq_cross_prod(speakers[i], speakers[j]);
volper = abs(this.vec_prod(xprod, speakers[k]));
lgth = (abs(this.vec_angle(speakers[i], speakers[j]))
+ abs(this.vec_angle(speakers[i], speakers[k]))
+ abs(this.vec_angle(speakers[j], speakers[k])));
if(lgth > 0.00001, { ^(volper / lgth)}, { ^0.0 });
}
//unq_cross_prod(t_ls v1,t_ls v2, t_ls *res)
/* vector cross product */
unq_cross_prod { |v1, v2|
var length, result;
result = VBAPSpeaker.new;
result.x = (v1.y * v2.z ) - (v1.z * v2.y);
result.y = (v1.z * v2.x ) - (v1.x * v2.z);
result.z = (v1.x * v2.y ) - (v1.y * v2.x);
length = this.vec_length(result);
result.x = result.x / length;
result.y = result.y / length;
result.z = result.z / length;
^result;
}
vec_length { |v1|
/* length of a vector */
^(sqrt(v1.x.squared + v1.y.squared + v1.z.squared));
}
vec_prod {|v1, v2|
/* vector dot product */
^((v1.x*v2.x) + (v1.y*v2.y) + (v1.z*v2.z));
}
vec_angle{ |v1, v2|
/* angle between two loudspeakers */
var inner;
inner = ((v1.x*v2.x) + (v1.y*v2.y) + (v1.z*v2.z)) /
(this.vec_length(v1) * this.vec_length(v2));
if(inner > 1.0, {inner = 1.0});
if (inner < -1.0, {inner = -1.0});
^abs(acos(inner));
}
any_ls_inside_triplet { |a, b, c| // speakers, numSpeakers
/* returns true if there is loudspeaker(s) inside given ls triplet */
var invdet;
var lp1, lp2, lp3;
var invmx;
var tmp;
var any_ls_inside, this_inside;
lp1 = speakers[a];
lp2 = speakers[b];
lp3 = speakers[c];
invmx = Array.newClear(9);
/* matrix inversion */
invdet = 1.0 / ( lp1.x * ((lp2.y * lp3.z) - (lp2.z * lp3.y))
- (lp1.y * ((lp2.x * lp3.z) - (lp2.z * lp3.x)))
+ (lp1.z * ((lp2.x * lp3.y) - (lp2.y * lp3.x))));
invmx[0] = ((lp2.y * lp3.z) - (lp2.z * lp3.y)) * invdet;
invmx[3] = ((lp1.y * lp3.z) - (lp1.z * lp3.y)) * invdet.neg;
invmx[6] = ((lp1.y * lp2.z) - (lp1.z * lp2.y)) * invdet;
invmx[1] = ((lp2.x * lp3.z) - (lp2.z * lp3.x)) * invdet.neg;
invmx[4] = ((lp1.x * lp3.z) - (lp1.z * lp3.x)) * invdet;
invmx[7] = ((lp1.x * lp2.z) - (lp1.z * lp2.x)) * invdet.neg;
invmx[2] = ((lp2.x * lp3.y) - (lp2.y * lp3.x)) * invdet;
invmx[5] = ((lp1.x * lp3.y) - (lp1.y * lp3.x)) * invdet.neg;
invmx[8] = ((lp1.x * lp2.y) - (lp1.y * lp2.x)) * invdet;
any_ls_inside = false;
for(0, numSpeakers - 1, {|i|
if((i != a) && (i != b) && (i != c), {
this_inside = true;
for(0, 2, {|j|
tmp = speakers[i].x * invmx[0 + (j*3)];
tmp = speakers[i].y * invmx[1 + (j*3)] + tmp;
tmp = speakers[i].z * invmx[2 + (j*3)] + tmp;
if(tmp < -0.001, {this_inside = false;});
});
if(this_inside, {any_ls_inside = true});
});
});
^any_ls_inside;
}
calculate_3x3_matrixes {
/* Calculates the inverse matrices for 3D */
var invdet;
var lp1, lp2, lp3;
var invmx;
var triplet_amount = 0, pointer,list_length=0;
var result;
if(sets.isNil, {
postln("define-loudspeakers: Not valid 3-D configuration");
^nil;
});
triplet_amount = sets.size;
//"triplet_amount: %\n".postf(triplet_amount);
list_length = triplet_amount * 21 + 2;
result = FloatArray.newClear(list_length);
result[0] = dim;
result[1] = numSpeakers;
pointer=2;
sets.do({|set|
lp1 = speakers[set.chanOffsets[0]];
lp2 = speakers[set.chanOffsets[1]];
lp3 = speakers[set.chanOffsets[2]];
invmx = FloatArray.newClear(9);
//"lp1x: % lp1y: % lp1z: %\n".postf(lp1.x, lp1.y, lp1.z);
//"lp2x: % lp2y: % lp2z: %\n".postf(lp2.x, lp2.y, lp2.z);
//"lp3x: % lp3y: % lp3z: %\n".postf(lp3.x, lp3.y, lp3.z);
invdet = 1.0 / ( (lp1.x * ((lp2.y * lp3.z) - (lp2.z * lp3.y)))
- (lp1.y * ((lp2.x * lp3.z) - (lp2.z * lp3.x)))
+ (lp1.z * ((lp2.x * lp3.y) - (lp2.y * lp3.x))));
//"invdet: %\n".postf(invdet);
invmx[0] = ((lp2.y * lp3.z) - (lp2.z * lp3.y)) * invdet;
invmx[3] = ((lp1.y * lp3.z) - (lp1.z * lp3.y)) * invdet.neg;
invmx[6] = ((lp1.y * lp2.z) - (lp1.z * lp2.y)) * invdet;
invmx[1] = ((lp2.x * lp3.z) - (lp2.z * lp3.x)) * invdet.neg;
invmx[4] = ((lp1.x * lp3.z) - (lp1.z * lp3.x)) * invdet;
invmx[7] = ((lp1.x * lp2.z) - (lp1.z * lp2.x)) * invdet.neg;
invmx[2] = ((lp2.x * lp3.y) - (lp2.y * lp3.x)) * invdet;
invmx[5] = ((lp1.x * lp3.y) - (lp1.y * lp3.x)) * invdet.neg;
invmx[8] = ((lp1.x * lp2.y) - (lp1.y * lp2.x)) * invdet;
set.inv_mx = invmx;
3.do({|i|
result[pointer] = set.chanOffsets[i] + 1;
pointer = pointer + 1;
});
9.do({|i|
result[pointer] = invmx[i];
pointer = pointer + 1;
});
result[pointer] = lp1.x; pointer = pointer + 1;
result[pointer] = lp2.x; pointer = pointer + 1;
result[pointer] = lp3.x; pointer = pointer + 1;
result[pointer] = lp1.y; pointer = pointer + 1;
result[pointer] = lp2.y; pointer = pointer + 1;
result[pointer] = lp3.y; pointer = pointer + 1;
result[pointer] = lp1.z; pointer = pointer + 1;
result[pointer] = lp2.z; pointer = pointer + 1;
result[pointer] = lp3.z; pointer = pointer + 1;
});
^result;
}
choose_ls_tuplets {
/* selects the loudspeaker pairs, calculates the inversion
matrices and stores the data to a global array*/
var atorad = (2 * 3.1415927 / 360);
var w1,w2;
var p1,p2;
var sorted_lss;
var exist;
var amount=0;
var inv_mat;
var ls_table;
var list_length;
var result;
var pointer;
exist = Array.newClear(maxNumSpeakers);
inv_mat = Array.fill(maxNumSpeakers, {Array.newClear(4)});
for(0, maxNumSpeakers - 1, {|i|
exist[i]=0;
});
/* sort loudspeakers according their azimuth angle */
sorted_lss = this.sort_2D_lss;
/* adjacent loudspeakers are the loudspeaker pairs to be used.*/
for(0, numSpeakers -2, {|i|
if((speakers[sorted_lss[i+1]].azi - speakers[sorted_lss[i]].azi) <= (180 - 10), {
if(this.calc_2D_inv_tmatrix(speakers[sorted_lss[i]].azi,
speakers[sorted_lss[i+1]].azi, inv_mat[i]),{
exist[i]=1;
amount = amount + 1;
});
});
});
if(((6.283 - speakers[sorted_lss[numSpeakers-1]].azi)
+ speakers[sorted_lss[0]].azi) <= (180 - 10), {
if(this.calc_2D_inv_tmatrix(speakers[sorted_lss[numSpeakers-1]].azi,
speakers[sorted_lss[0]].azi,
inv_mat[numSpeakers-1]), {
exist[numSpeakers-1]=1;
amount = amount + 1;
});
});
/* Output */
list_length= amount * 6 + 2;
result = Array.newClear(list_length);
result[0] = dim;
result[1] = numSpeakers;
pointer=2;
for(0, numSpeakers - 2, {|i|
if(exist[i] == 1, {
result[pointer] = sorted_lss[i]+1;
pointer = pointer + 1;
result[pointer] = sorted_lss[i+1]+1;
pointer = pointer + 1;
for(0, 3, {|j|
result[pointer] = inv_mat[i][j];
pointer = pointer + 1;
});
});
});
if(exist[numSpeakers-1] == 1, {
result[pointer] = sorted_lss[numSpeakers-1]+1;
pointer = pointer + 1;
result[pointer] = sorted_lss[0]+1;
pointer = pointer + 1;
for(0, 3, {|j|
result[pointer] = inv_mat[numSpeakers-1][j];
pointer = pointer + 1;
});
});
^result;
}
sort_2D_lss {
/* sort loudspeakers according to azimuth angle */
var i,j,index;
var tmp, tmp_azi;
var rad2ang = 360.0 / ( 2 * pi );
var x,y;
var sorted_lss;
sorted_lss = Array.newClear(maxNumSpeakers);
/* Transforming angles between -180 and 180 */
for (0, numSpeakers - 1, {|i|
speakers[i].azi = acos( speakers[i].x) * rad2ang;
if (abs(speakers[i].y) <= 0.001, {
tmp = 1.0;
}, {
tmp = speakers[i].y / abs(speakers[i].y);
});
speakers[i].azi = speakers[i].azi * tmp;
});
for (0, numSpeakers - 1, {|i|
tmp = 2000;
for (0, numSpeakers - 1, {|j|
if (speakers[j].azi <= tmp, {
tmp = speakers[j].azi;
index = j;
});
});
sorted_lss[i]=index;
tmp_azi = (speakers[index].azi);
speakers[index].azi = (tmp_azi + 4000.0);
});
for (0, numSpeakers - 1, {|i|
tmp_azi = (speakers[i].azi);
speakers[i].azi = (tmp_azi - 4000.0);
});
^sorted_lss;
}
calc_2D_inv_tmatrix { |azi1, azi2, inv_mat|
/* calculate inverse 2x2 matrix */
var x1,x2,x3,x4;
var y1,y2,y3,y4;
var det;
var rad2ang = 360.0 / ( 2 * 3.141592 );
x1 = cos(azi1 / rad2ang);
x2 = sin(azi1 / rad2ang);
x3 = cos(azi2 / rad2ang);
x4 = sin(azi2 / rad2ang);
det = (x1 * x4) - ( x3 * x2 );
if(abs(det) <= 0.001, {
inv_mat[0] = 0.0;
inv_mat[1] = 0.0;
inv_mat[2] = 0.0;
inv_mat[3] = 0.0;
^false;
}, {
inv_mat[0] = (x4 / det);
inv_mat[1] = (x3.neg / det);
inv_mat[2] = (x2.neg / det);
inv_mat[3] = (x1 / det);
^true;
})
}
}
VBAPSpeaker {
// setters are 'private'
var <>x, <>y, <>z;
// spherical coords, angles (in degrees) from a central point
var <>azi; // from median plane +/- 180 deg
var <>ele; // above azimuthal plane
*new {|azi, ele|
^super.new.init(azi, ele);
}
init{|azimuth, elevation, radius|
azi = azimuth;
ele = elevation;
}
}
VBAPSpeakerSet { // triplet or pair
var <chanOffsets;
var <>inv_mx;
*new {|chanOffsets|
^super.newCopyArgs(chanOffsets);
}
}
VBAP : MultiOutUGen {
// spread 0 - 100
*ar { arg numChans, in, bufnum, azimuth = 0.0, elevation = 1.0, spread = 0.0;
^this.multiNew('audio', numChans, in, bufnum, azimuth, elevation, spread )
}
*kr { arg numChans, in, bufnum, azimuth = 0.0, elevation = 1.0, spread = 0.0;
^this.multiNew('control', numChans, in, bufnum, azimuth, elevation, spread )
}
init { arg numChans ... theInputs;
inputs = theInputs;
channels = Array.fill(numChans, { arg i; OutputProxy(rate,this, i) });
^channels
}
}
|