File: Hilbert.sc

package info (click to toggle)
supercollider 1%3A3.10.0%2Brepack-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 45,496 kB
  • sloc: cpp: 283,513; lisp: 74,040; ansic: 72,252; sh: 23,016; python: 7,175; makefile: 1,087; perl: 766; java: 677; yacc: 314; lex: 175; ruby: 136; objc: 65; xml: 15
file content (48 lines) | stat: -rw-r--r-- 1,263 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Hilbert : MultiOutUGen {
	*ar { arg in, mul = 1, add = 0;
		^this.multiNew('audio', in).madd(mul, add);
	}

	init { arg ... theInputs;
		inputs = theInputs;
		^this.initOutputs(2, rate);
	}
}

// class using FFT (with a delay) for better results than the above UGen
// buffer should be 2048 or 1024
// 2048, better results, more delay
// 1024, less delay, little choppier results

HilbertFIR : UGen {
	*ar { arg in, buffer;
		var fft, delay;
		fft = FFT(buffer, in);
		fft = PV_PhaseShift90(fft);
		delay = BufDur.kr(buffer);
		// return [source, shift90]
		^[DelayN.ar(in, delay, delay), IFFT(fft)];
	}
}

// single sideband amplitude modulation, using optimized Hilbert phase differencing network
// basically coded by Joe Anderson, except Sean Costello changed the word HilbertIIR.ar
// to Hilbert.ar

FreqShift : UGen {
	*ar {
		arg in,			// input signal
		freq = 0.0,		// shift, in cps
		phase = 0.0,	// phase of SSB
		mul = 1.0,
		add = 0.0;
//		var shifts;
//		freq = freq.asArray;
//		shifts = Array.fill(freq.size, {arg i;
//			// multiply by quadrature
//			// and add together. . .
//			 (Hilbert.ar(in) * SinOsc.ar(freq[i], (phase + [ 0.5*pi, 0.0 ]))).sum});
//		^(shifts).madd(mul, add)
		^this.multiNew('audio', in, freq, phase).madd(mul, add)
	}
}