File: ML_SpecStats.cpp

package info (click to toggle)
supercollider 1%3A3.10.0%2Brepack-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 45,496 kB
  • sloc: cpp: 283,513; lisp: 74,040; ansic: 72,252; sh: 23,016; python: 7,175; makefile: 1,087; perl: 766; java: 677; yacc: 314; lex: 175; ruby: 136; objc: 65; xml: 15
file content (314 lines) | stat: -rw-r--r-- 8,788 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/*

Spectral statistics UGens for SuperCollider, by Dan Stowell.
Copyright (c) Dan Stowell 2006-2007.
Now part of SuperCollider 3, (c) James McCartney.

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301  USA

*/

#include "SC_PlugIn.h"
#include "SCComplex.h"
#include "FFT_UGens.h"

#include "ML.h"

//////////////////////////////////////////////////////////////////////////////////////////////////

/*
struct FFTAnalyser_Unit : Unit
{
	float outval;

	// Not always used: multipliers which convert from bin indices to freq vals, and vice versa.
	// See also the macros for deriving these.
	float m_bintofreq; // , m_freqtobin;
};

struct FFTAnalyser_OutOfPlace : FFTAnalyser_Unit
{
	int m_numbins;
	float *m_tempbuf;
};

struct SpecFlatness : FFTAnalyser_Unit
{
};

struct SpecPcile : FFTAnalyser_OutOfPlace
{
	bool m_interpolate;
};

struct SpecCentroid : FFTAnalyser_Unit
{
};
*/

//////////////////////////////////////////////////////////////////////////////////////////////////


// for operation on one buffer
// just like PV_GET_BUF except it outputs unit->outval rather than -1 when FFT not triggered
#define FFTAnalyser_GET_BUF \
	float fbufnum = ZIN0(0); \
	if (fbufnum < 0.f) { ZOUT0(0) = unit->outval; return; } \
	ZOUT0(0) = fbufnum; \
	uint32 ibufnum = (uint32)fbufnum; \
	World *world = unit->mWorld; \
	SndBuf *buf; \
	if (!(ibufnum < world->mNumSndBufs)) { \
		int localBufNum = ibufnum - world->mNumSndBufs; \
		Graph *parent = unit->mParent; \
		if(!(localBufNum > parent->localBufNum)) { \
			buf = parent->mLocalSndBufs + localBufNum; \
		} else { \
			buf = world->mSndBufs; \
		} \
	} else { \
		buf = world->mSndBufs + ibufnum; \
	} \
	LOCK_SNDBUF(buf); \
	int numbins = (buf->samples - 2) >> 1;

// Copied from FFT_UGens.cpp
#define GET_BINTOFREQ \
	if(unit->m_bintofreq==0.f){ \
		unit->m_bintofreq = world->mFullRate.mSampleRate / buf->samples; \
	} \
	float bintofreq = unit->m_bintofreq;
/*
#define GET_FREQTOBIN \
	if(unit->m_freqtobin==0.f){ \
		unit->m_freqtobin = buf->samples / world->mFullRate.mSampleRate; \
	} \
	float freqtobin = unit->m_freqtobin;
*/

//////////////////////////////////////////////////////////////////////////////////////////////////
/*
extern "C"
{
	void SpecFlatness_Ctor(SpecFlatness *unit);
	void SpecFlatness_next(SpecFlatness *unit, int inNumSamples);

	void SpecPcile_Ctor(SpecPcile *unit);
	void SpecPcile_next(SpecPcile *unit, int inNumSamples);
	void SpecPcile_Dtor(SpecPcile *unit);

	void SpecCentroid_Ctor(SpecCentroid *unit);
	void SpecCentroid_next(SpecCentroid *unit, int inNumSamples);

}
*/
/*
SCPolarBuf* ToPolarApx(SndBuf *buf)
{
	if (buf->coord == coord_Complex) {
		SCComplexBuf* p = (SCComplexBuf*)buf->data;
		int numbins = buf->samples - 2 >> 1;
		for (int i=0; i<numbins; ++i) {
			p->bin[i].ToPolarApxInPlace();
		}
		buf->coord = coord_Polar;
	}

	return (SCPolarBuf*)buf->data;
}

SCComplexBuf* ToComplexApx(SndBuf *buf)
{
	if (buf->coord == coord_Polar) {
		SCPolarBuf* p = (SCPolarBuf*)buf->data;
		int numbins = buf->samples - 2 >> 1;
		for (int i=0; i<numbins; ++i) {
			p->bin[i].ToComplexApxInPlace();
		}
		buf->coord = coord_Complex;
	}
	return (SCComplexBuf*)buf->data;
}

InterfaceTable *ft;

void init_SCComplex(InterfaceTable *inTable);
*/
//////////////////////////////////////////////////////////////////////////////////////////////////

void SpecFlatness_Ctor(SpecFlatness *unit)
{
	SETCALC(SpecFlatness_next);
	ZOUT0(0) = unit->outval = 0.;
	unit->m_oneovern = 0.;
}

void SpecFlatness_next(SpecFlatness *unit, int inNumSamples)
{
	FFTAnalyser_GET_BUF
	if(unit->m_oneovern == 0.)
		unit->m_oneovern = 1./(numbins + 2);

	SCComplexBuf *p = ToComplexApx(buf);

	// Spectral Flatness Measure is geometric mean divided by arithmetic mean.
	//
	// In order to calculate geom mean without hitting the precision limit,
	//  we use the trick of converting to log, taking the average, then converting back from log.
	double geommean = std::log(sc_abs(p->dc)) + std::log(sc_abs(p->nyq));
	double mean     = sc_abs(p->dc)      + sc_abs(p->nyq);

	for (int i=0; i<numbins; ++i) {
		float rabs = (p->bin[i].real);
		float iabs = (p->bin[i].imag);
		float amp = std::sqrt((rabs*rabs) + (iabs*iabs));
		if(amp != 0.f) { // zeroes lead to NaNs
			geommean += std::log(amp);
			mean += amp;
		}
	}

	double oneovern = unit->m_oneovern;
	geommean = exp(geommean * oneovern); // Average and then convert back to linear
	mean *= oneovern;

	// Store the val for output in future calls
	unit->outval = (mean==0.f ? 0.8f : (geommean / mean));
	// Note: for silence the value is undefined.
	// Here, for silence we instead output an empirical value based on very quiet white noise.

	ZOUT0(0) = unit->outval;
}

////////////////////////////////////////////////////////////////////////////////////

void SpecPcile_Ctor(SpecPcile *unit)
{
	SETCALC(SpecPcile_next);

	unit->m_interpolate = ZIN0(2) > 0.f;

	ZOUT0(0) = unit->outval = 0.;
	unit->m_tempbuf = 0;
}

void SpecPcile_next(SpecPcile *unit, int inNumSamples)
{
	FFTAnalyser_GET_BUF

	// Used to be MAKE_TEMP_BUF but we can handle it more cleanly in this specific case:
	if (!unit->m_tempbuf) {
		unit->m_tempbuf = (float*)RTAlloc(unit->mWorld, numbins * sizeof(float));
		unit->m_numbins = numbins;
		unit->m_halfnyq_over_numbinsp2 = ((float)unit->mWorld->mSampleRate) * 0.5f / (float)(numbins+2);
	} else if (numbins != unit->m_numbins) return;

	// Percentile value as a fraction. eg: 0.5 == 50-percentile (median).
	float fraction = ZIN0(1);
	bool interpolate = unit->m_interpolate;

	// The magnitudes in *p will be converted to cumulative sum values and stored in *q temporarily
	SCComplexBuf *p = ToComplexApx(buf);
	float *q = (float*)unit->m_tempbuf;

	float cumul = sc_abs(p->dc);

	for (int i=0; i<numbins; ++i) {
		float real = p->bin[i].real;
		float imag = p->bin[i].imag;
		cumul += std::sqrt(real*real + imag*imag);

		// A convenient place to store the mag values...
		q[i] = cumul;
	}

	cumul += sc_abs(p->nyq);

	float target = cumul * fraction; // The target cumul value, stored somewhere in q

	float bestposition = 0; // May be linear-interpolated between bins, but not implemented yet
	           // NB If nothing beats the target (e.g. if fraction is -1) zero Hz is returned
	float binpos;
	for(int i=0; i<numbins; ++i) {
		//Print("Testing %g, at position %i", q->bin[i].real, i);
		if(!(q[i] < target)){ // this is a ">=" comparison, done more efficiently as "!(<)"
			if(interpolate && i!=0) {
				binpos = ((float)i) + 1.f - (q[i] - target) / (q[i] - q[i-1]);
			} else {
				binpos = ((float)i) + 1.f;
			}
			bestposition = binpos * unit->m_halfnyq_over_numbinsp2;
			//Print("Target %g beaten by %g (at position %i), equating to freq %g\n",
			//				target, p->bin[i].real, i, bestposition);
			break;
		}
	}

	// Store the val for output in future calls
	unit->outval = bestposition;

	ZOUT0(0) = unit->outval;
}


void SpecPcile_Dtor(SpecPcile *unit)
{
	if(unit->m_tempbuf) RTFree(unit->mWorld, unit->m_tempbuf);
}

////////////////////////////////////////////////////////////////////////////////////////////////////////

void SpecCentroid_Ctor(SpecCentroid *unit)
{
	SETCALC(SpecCentroid_next);
	ZOUT0(0) = unit->outval = 0.;

	unit->m_bintofreq = 0.f;
}

void SpecCentroid_next(SpecCentroid *unit, int inNumSamples)
{
	FFTAnalyser_GET_BUF

	SCPolarBuf *p = ToPolarApx(buf);

	GET_BINTOFREQ


	double num   = sc_abs(p->nyq) * (numbins+1);
	double denom = sc_abs(p->nyq);

	for (int i=0; i<numbins; ++i) {
		num   += sc_abs(p->bin[i].mag) * (i+1);
		denom += sc_abs(p->bin[i].mag);
	}

	ZOUT0(0) = unit->outval = denom == 0.0 ? 0.f : (float) (bintofreq * num/denom);
}

//////////////////////////////////////////////////////////////////////////////////////////////////
/*
void load(InterfaceTable *inTable)
{
	ft= inTable;

	//(*ft->fDefineUnit)("SpecFlatness", sizeof(FFTAnalyser_Unit), (UnitCtorFunc)&SpecFlatness_Ctor, 0, 0);
	//(*ft->fDefineUnit)("SpecPcile", sizeof(SpecPcile_Unit), (UnitCtorFunc)&SpecPcile_Ctor, (UnitDtorFunc)&SpecPcile_Dtor, 0);

	DefineSimpleUnit(SpecFlatness);
	DefineDtorUnit(SpecPcile);
	DefineSimpleUnit(SpecCentroid);
}
*/