1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
/*
* SuperCollider real time audio synthesis system
* Copyright (c) 2002 James McCartney. All rights reserved.
* Copyright (c) 2011 Tim Blechmann
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#pragma once
#include <cassert>
#include "SC_PlugIn.h"
#include "function_attributes.h"
#include <type_traits>
/// c++ wrapper for Unit struct
class SCUnit : public Unit {
public:
///@{
/// generic signal wrappers
template <typename FloatType> struct ScalarSignal {
explicit ScalarSignal(FloatType value): value(value) {}
FloatType consume() const { return value; }
FloatType value;
};
template <typename FloatType> struct SlopeSignal {
SlopeSignal(FloatType value, FloatType slope): value(value), slope(slope) {}
FloatType consume() {
FloatType ret = value;
value += slope;
return ret;
}
FloatType value, slope;
};
template <typename FloatType> struct AudioSignal {
explicit AudioSignal(const FloatType* pointer): pointer(pointer) {}
FloatType consume() { return *pointer++; }
const FloatType* pointer;
};
template <typename FloatType> inline ScalarSignal<FloatType> makeScalar(FloatType value) const {
return ScalarSignal<FloatType>(value);
}
template <typename FloatType> inline SlopeSignal<FloatType> makeSlope(FloatType next, FloatType last) const {
return SlopeSignal<FloatType>(last, calcSlope(next, last));
}
inline AudioSignal<float> makeSignal(int index) const {
const float* input = in(index);
return AudioSignal<float>(input);
}
///@}
/// get input signal at index
const float* in(int index) const {
assert(uint32(index) < mNumInputs);
const Unit* unit = this;
return IN(index);
}
/// get input signal at index (to be used with ZXP)
const float* zin(int index) const {
assert(uint32(index) < mNumInputs);
const Unit* unit = this;
return ZIN(index);
}
/// get first sample of input signal
float in0(int index) const {
assert(uint32(index) < mNumInputs);
const Unit* unit = this;
return IN0(index);
}
/// get output signal at index
float* out(int index) const {
assert(uint32(index) < mNumOutputs);
const Unit* unit = this;
return OUT(index);
}
/// get output signal at index (to be used with ZXP)
float* zout(int index) const {
assert(uint32(index) < mNumOutputs);
const Unit* unit = this;
return ZOUT(index);
}
/// get reference to first sample of output signal
float& out0(int index) const {
assert(uint32(index) < mNumOutputs);
const Unit* unit = this;
return OUT0(index);
}
/// get rate of input signal
int inRate(int index) const {
assert(uint32(index) < mNumInputs);
const Unit* unit = this;
return INRATE(index);
}
/// get number of inputs
int numInputs() const { return int(mNumInputs); }
/// get number of outputs
int numOutputs() const { return int(mNumOutputs); }
/// test if input signal at index is scalar rate
bool isScalarRateIn(int index) const {
assert(uint32(index) < mNumInputs);
return inRate(index) == calc_ScalarRate;
}
/// test if input signal at index is demand rate
bool isDemandRateIn(int index) const {
assert(uint32(index) < mNumInputs);
return inRate(index) == calc_DemandRate;
}
/// test if input signal at index is control rate
bool isControlRateIn(int index) const {
assert(uint32(index) < mNumInputs);
return inRate(index) == calc_BufRate;
}
/// test if input signal at index is audio rate
bool isAudioRateIn(int index) const {
assert(uint32(index) < mNumInputs);
return inRate(index) == calc_FullRate;
}
/// get the blocksize of the input
int inBufferSize(int index) const {
assert(uint32(index) < mNumInputs);
const Unit* unit = this;
return INBUFLENGTH(index);
}
/// get sample rate of ugen
double sampleRate() const {
const Unit* unit = this;
return SAMPLERATE;
}
/// get sample duration
double sampleDur() const {
const Unit* unit = this;
return SAMPLEDUR;
}
/// get buffer size of ugen
int bufferSize() const { return mBufLength; }
/// get control rate
double controlRate() const {
const Unit* unit = this;
return BUFRATE;
}
/// get duration of a control block
double controlDur() const {
const Unit* unit = this;
return BUFDUR;
}
/// get sampling rate of audio signal
double fullSampleRate() const {
const Unit* unit = this;
return FULLRATE;
}
/// get buffer size of audio signals
int fullBufferSize() const {
const Unit* unit = this;
return FULLBUFLENGTH;
}
/// calculate slope value
template <typename FloatType> FloatType calcSlope(FloatType next, FloatType prev) const {
const Unit* unit = this;
return CALCSLOPE(next, prev);
}
template <typename UnitType, void (UnitType::*PointerToMember)(int)> static UnitCalcFunc make_calc_function(void) {
return &run_member_function<UnitType, PointerToMember>;
}
/// set calc function & compute initial sample
template <typename UnitType, void (UnitType::*PointerToMember)(int)> void set_calc_function(void) {
mCalcFunc = make_calc_function<UnitType, PointerToMember>();
(mCalcFunc)(this, 1);
}
/// set calc function & compute initial sample
template <typename UnitType, void (UnitType::*VectorCalcFunc)(int), void (UnitType::*ScalarCalcFunc)(int)>
void set_vector_calc_function(void) {
mCalcFunc = make_calc_function<UnitType, VectorCalcFunc>();
make_calc_function<UnitType, ScalarCalcFunc>()(this, 1);
}
/// @}
private:
template <typename UnitType, void (UnitType::*PointerToMember)(int)>
HOT static void run_member_function(struct Unit* unit, int inNumSamples) {
UnitType* realUnit = static_cast<UnitType*>(unit);
((realUnit)->*(PointerToMember))(inNumSamples);
}
};
/// define Ctor/Dtor functions for a class
#define DEFINE_XTORS(CLASSNAME) \
void CLASSNAME##_Ctor(CLASSNAME* unit) { new (unit) CLASSNAME(); } \
\
void CLASSNAME##_Dtor(CLASSNAME* unit) { unit->~CLASSNAME(); }
namespace detail {
template <class UGenClass> void constructClass(Unit* unit) { new (static_cast<UGenClass*>(unit)) UGenClass(); }
template <class UGenClass> void destroyClass(Unit* unit) { static_cast<UGenClass*>(unit)->~UGenClass(); }
}
template <class Unit> void registerUnit(InterfaceTable* ft, const char* name, bool disableBufferAliasing = false) {
UnitCtorFunc ctor = detail::constructClass<Unit>;
UnitDtorFunc dtor = std::is_trivially_destructible<Unit>::value ? nullptr : detail::destroyClass<Unit>;
(*ft->fDefineUnit)(name, sizeof(Unit), ctor, dtor, uint32(disableBufferAliasing ? 1 : 0));
}
|