File: LorenzL.schelp

package info (click to toggle)
supercollider 1%3A3.13.0%2Brepack-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 80,292 kB
  • sloc: cpp: 476,363; lisp: 84,680; ansic: 77,685; sh: 25,509; python: 7,909; makefile: 3,440; perl: 1,964; javascript: 974; xml: 826; java: 677; yacc: 314; lex: 175; objc: 152; ruby: 136
file content (58 lines) | stat: -rw-r--r-- 1,254 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
class:: LorenzL
summary:: Lorenz chaotic generator
categories:: UGens>Generators>Chaotic

description::
A strange attractor discovered by Edward N. Lorenz while studying mathematical models of the atmosphere. The system is composed of three ordinary differential equations:

teletype::
	x' = s * (y - x)
	y' = x * (r - z) - y
	z' = x * y - b * z
::

The time step amount code::h:: determines the rate at which the ODE is evaluated. Higher values will increase the rate, but cause more instability. A safe choice is the default amount of 0.05.

classmethods::
method:: ar
argument:: freq
Iteration frequency in Hertz
argument:: s
Equation variable
argument:: r
Equation variable
argument:: b
Equation variable
argument:: h
Integration time step
argument:: xi
Initial value of x
argument:: yi
Initial value of y
argument:: zi
Initial value of z
argument:: mul
argument:: add

examples::
code::
// vary frequency
{ LorenzL.ar(MouseX.kr(20, SampleRate.ir)) * 0.3 }.play(s);
::

code::
// randomly modulate params
(
{ LorenzL.ar(
	SampleRate.ir,
	LFNoise0.kr(1, 2, 10),
	LFNoise0.kr(1, 20, 38),
	LFNoise0.kr(1, 1.5, 2)
) * 0.2 }.play(s);
)
::

code::
// as a frequency control
{ SinOsc.ar(Lag.ar(LorenzL.ar(MouseX.kr(1, 200)),3e-3)*800+900)*0.4 }.play(s);
::