1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
|
class:: LorenzL
summary:: Lorenz chaotic generator
categories:: UGens>Generators>Chaotic
description::
A strange attractor discovered by Edward N. Lorenz while studying mathematical models of the atmosphere. The system is composed of three ordinary differential equations:
teletype::
x' = s * (y - x)
y' = x * (r - z) - y
z' = x * y - b * z
::
The time step amount code::h:: determines the rate at which the ODE is evaluated. Higher values will increase the rate, but cause more instability. A safe choice is the default amount of 0.05.
classmethods::
method:: ar
argument:: freq
Iteration frequency in Hertz
argument:: s
Equation variable
argument:: r
Equation variable
argument:: b
Equation variable
argument:: h
Integration time step
argument:: xi
Initial value of x
argument:: yi
Initial value of y
argument:: zi
Initial value of z
argument:: mul
argument:: add
examples::
code::
// vary frequency
{ LorenzL.ar(MouseX.kr(20, SampleRate.ir)) * 0.3 }.play(s);
::
code::
// randomly modulate params
(
{ LorenzL.ar(
SampleRate.ir,
LFNoise0.kr(1, 2, 10),
LFNoise0.kr(1, 20, 38),
LFNoise0.kr(1, 1.5, 2)
) * 0.2 }.play(s);
)
::
code::
// as a frequency control
{ SinOsc.ar(Lag.ar(LorenzL.ar(MouseX.kr(1, 200)),3e-3)*800+900)*0.4 }.play(s);
::
|