1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
class:: Ndef
summary:: node proxy definition
categories:: JITLib>NodeProxy, Live Coding
related:: Classes/ProxySpace, Classes/Tdef
description::
Ndef registers synths by key. All accesses to the registered synths go through the Ndef class via that key. Registered synths can be replaced with other synths while playing. A synth and its replacement can automatically crossfade and the replacement time can be quantized.
Ndef is a reference to a proxy, forms an alternative to link::Classes/ProxySpace::. All methods are inherited from link::Classes/NodeProxy::.
code::
Ndef(key) //returns the instance
Ndef(key, obj) //stores the object and returns the instance, like Tdef and Pdef.
::
Graphical editor overviewing all current Ndefs: link::Classes/NdefMixer::. A general overview: link::Overviews/JITLib::.
subsection::First Example
code::
s.boot;
Ndef(\a).play; // play to hardware output.
Ndef(\a).fadeTime = 2; // fadeTime specifies crossfade
// set the source
Ndef(\a, { SinOsc.ar([350, 351.3], 0, 0.2) });
Ndef(\a, { Pulse.ar([350, 351.3] / 4, 0.4, 0.2) });
Ndef(\a, Pbind(\dur, 0.03, \freq, Pbrown(0, 1, 0.1, inf).linexp(0, 1, 200, 350)));
Ndef(\a, { Ringz.ar(Ndef.ar(\b), [350, 351.3] * 2, 0.4) });
Ndef(\b, { Impulse.ar([5, 7]/2, [0, 0.5], 0.15) });
Ndef.clear(3); // clear all after 3 seconds
::
ClassMethods::
private::initClass
subsection::Creation
method::new
Return a new node proxy and store it in a global ProxySpace under the key. If there is already an Ndef there, replace its object with the new one. The object can be any supported class, see link::Classes/NodeProxy#Supported sources:: help.
argument::key
the name of the proxy (usually a symbol). If only the key is given and no object, it returns the proxy object:
code::
Ndef(\x) // get the proxy
::
If key is an association, it is interpreted as strong::key -> server name::. (order changed in SC3.3 !). If no name is given, it uses the default server that was default when Ndef was first called. (to change it, see link::#*defaultServer::).
argument::object
an object
code::
Ndef(\x, { Dust.ar }); // returns the proxy and set the source object.
::
method::ar
equivalent to code::*new(key).ar(numChannels, offset):: (see link::Classes/BusPlug#-ar::)
method::kr
equivalent to code::*new(key).kr(numChannels, offset):: (see link::Classes/BusPlug#-kr::)
method::clear
clear all proxies
method::defaultServer
set the default server (default: code::Server.default::)
method::all
Return the dictionary of all servers, pointing to proxyspaces with Ndefs for each.
code::
Ndef.all;
::
method::dictFor
Return the proxyspace for a given server.
code::
Ndef.dictFor(s);
::
subsection::Setting default parameters
Behind every Ndef there is one single instance of link::Classes/ProxySpace:: per server used (usually just the one for the default server). This ProxySpace keeps default values for the proxies that can be set. This can be done by:
code::
// set default quant
Ndef(\x).proxyspace.quant = 1.0;
::
The other values that can be set in such a way are: code::clock, fadeTime, quant, reshaping, awake::.
Examples::
code::
s.boot;
Ndef(\sound).play;
Ndef(\sound).fadeTime = 1;
Ndef(\sound, { SinOsc.ar([600, 635], 0, SinOsc.kr(2).max(0) * 0.2) });
Ndef(\sound, { SinOsc.ar([600, 635] * 3, 0, SinOsc.kr(2 * 3).max(0) * 0.2) });
Ndef(\sound, { SinOsc.ar([600, 635] * 2, 0, SinOsc.kr(2 * 3).max(0) * 0.2) });
Ndef(\sound, Pbind(\dur, 0.17, \freq, Pfunc({ rrand(300, 700) })) );
Ndef(\lfo, { LFNoise1.kr(3, 400, 800) });
Ndef(\sound).map(\freq, Ndef(\lfo));
Ndef(\sound, { arg freq; SinOsc.ar([600, 635] + freq, 0, SinOsc.kr(2 * 3).max(0) * 0.2) });
Ndef(\lfo, { LFNoise1.kr(300, 400, 800) });
Ndef.clear; //clear all Ndefs
::
subsection::using Ndef inside other Ndefs
code::
Ndef(\lfo2, { LFNoise1.kr(LFNoise1.kr(0.1).exprange(1, 300) ! 2, 400, 800) });
Ndef(\sound, { Blip.ar(Ndef.kr(\lfo2), 30) * 0.2 }).play;
Ndef(\lfo2, { [MouseX.kr(10, 300, 1), MouseY.kr(10, 300, 1)] });
::
subsection::setting and mapping parameters
code::
Ndef(\sound, { |freq = 56, numHarm = 10| Blip.ar(freq, numHarm, 30) * 0.2 }).play;
Ndef(\sound).set(\freq, 15);
Ndef(\sound).set(\freq, 15, \numHarm, 100);
Ndef(\lfo, { LFNoise2.kr(2).exprange(10, 200) });
Ndef(\sound).map(\numHarm, Ndef(\lfo));
Ndef(\sound).set(\numHarm, nil); // unmap.
Ndef(\sound).stop;
::
subsection::Reserved parameters
Three parameters are automatically specified if they don't exist in a given UGen function. You can override their use: code::[\out, \gate, \fadeTime]::
subsection::Specifying your own envelope
If a UGen function that is passed to the proxy has its own envelope, and if this envelope can free the synth, the node proxy uses this envelope instead of making its own. If you provide a code::fadeTime:: argument, the proxy's fadeTime will be used.
code::
Ndef(\sound).fadeTime = 3;
(
Ndef(\sound, { |fadeTime = 1, gate = 1|
var e = Env.adsr(fadeTime, 0.01, 0.4, fadeTime).ar(2, gate);
SinOsc.ar(100 + (e * 700), SinOsc.ar(208) * (1 - e) * 6) * e * 0.1
}).play
)
::
subsection::Simple audio routing with the <<> operator
code::
(
Ndef(\sound, {
RHPF.ar(
\in1.ar([0, 0]) * \in2.ar([0, 0]),
\freq.kr(6000, 2),
\rq.kr(0.2)
) * 7
}).play;
Ndef(\sound).fadeTime = 0.2; // avoid harsh clicks
)
Ndef(\a, { SinOsc.ar(MouseX.kr(300, 1000, 1) * [1, 1.2], \phase.ar([0, 0]) * 0.2) });
Ndef(\b, { LFDNoise3.ar(MouseY.kr(3, 1000, 1) * [1, 1.2]) });
Ndef(\c, { LFTri.ar(MouseY.kr(3, 10, 1) * [1, 1.2]).max(0) });
Ndef(\a).fadeTime = 0.2; // avoid harsh clicks again
Ndef(\sound) <<>.in1 Ndef(\a);
Ndef(\sound) <<>.in2 Ndef(\b);
Ndef(\sound) <<>.in2 Ndef(\c);
Ndef(\a) <<>.phase Ndef(\sound);
Ndef(\a) <<>.phase nil; // unmap
Ndef.clear(3); // fade out and clear all Ndefs
::
subsection::Embedding multi-channel Patterns, playing Streams in parallel
Controlling multi-channeled sequenced streams and having independent control over filtering and node ordering is a difficult topic in SuperCollider. However, using Ndefs (or their superclass link::Classes/NodeProxy:: or a link::Classes/ProxySpace::) may provide a convenient solution.
code::
// a SynthDef, creating single-channel grain when instantiated
(
SynthDef(\grain, { |out=0, freq=300, amp=0.3|
OffsetOut.ar(out, Pulse.ar(freq) * EnvGen.kr(Env.perc, doneAction: Done.freeSelf) * amp)
}).add;
)
// number of channels
~numChans = 5;
// values in a Pattern may be set in various ways
// here we use control buses, except for \dur which
// doesn't accept a control bus in parallel playing streams
// therefore we use PatternProxies
~durs = ~numChans.collect({ |i| PatternProxy(0.5 + (i/10)) });
// other parameters could as well be controlled in PatternProxies,
// yet, control buses are convenient either
~freqs = Bus.control(s, ~numChans);
~freqs.setn(Array.geom(~numChans, 300, 1.1));
~amps = Bus.control(s, ~numChans);
~amps.setn(0.2!~numChans);
// the Pattern: a Ppar holding one Pbind for each channel,
// all wrapped in a Pdef
(
Pdef(\ppar,
Ppar({ |i|
Pbind(
\instrument, \grain,
// we only set a single channel
\dur, ~durs[i],
\freq, ~freqs.subBus(i).asMap,
\amp, ~amps.subBus(i).asMap,
// the Pattern will play to a yet unknown private bus
// we only want to make sure the offset is right
\channelOffset, i,
)
}!~numChans)
)
)
// initialize an Ndef that will hold the Pdef as its source
// make sure the Ndef gets initialized to the right number of channels by calling 'mold'
Ndef(\ppar).mold(~numChans, \audio, \elastic);
Ndef(\ppar)[0] = Pdef(\ppar);
// mix the 5 channel audio coming from Ndef(\ppar) down to stereo
// Splay will spread the channels over the stereo panorama
// possibly use headphones to clearly identify the effect
Ndef(\stereo, { Splay.ar(\in.ar(0!~numChans)) });
// concatenate the Ndefs, so Ndef(\ppar)'s out will feed into Ndef(\stereo)'s in
Ndef(\stereo) <<> Ndef(\ppar);
Ndef(\stereo).play;
// change durations
~durs.do({ |pp, i| pp.source = Pseq(Array.fib(5, i/10 + 0.1, i+1/5), inf) });
~durs.do({ |pp, i| pp.source = 0.5 + (i/10) });
~durs.do({ |pp| pp.source.postcs });
// frequencies
~freqs.setn(Array.geom(~numChans, 250, 1.6));
~freqs.setn(Array.geom(~numChans, 300, 1.1));
// add a filter Ndef
(
Ndef(\filter, {
HPF.ar(
\in.ar(0!~numChans),
SinOsc.ar({|i| 2 + i}!~numChans) + 1 * \multFreq.kr(Array.geom(~numChans, 400, 2))
)
}).mold(~numChans, \audio, \elastic);
)
// set a fadeTime for smooth transitions and add the filter to the chain
#[ppar, stereo, filter].do({ |k| Ndef(k).fadeTime_(3) });
Ndef(\stereo) <<> Ndef(\filter) <<> Ndef(\ppar);
// set filter param, considering fadeTime
Ndef(\filter).xset(\multFreq, Array.rand(~numChans, 20, 10000));
Ndef.clear;
Pdef.clear;
::
subsection::Making Copies
method::copy
Because an Ndef is a unique instance for a given key, it can be copied only by supplying a new key.
See also: link::Classes/NodeProxy#-copy::.
code::
Ndef(\x, { SinOsc.ar(Rand(500, 900)) * 0.1 }).play;
Ndef(\x).copy(\y);
Ndef(\y).play;
::
argument::newKey
A valid new key, usually a link::Classes/Symbol::
subsection::Recursion
Ndefs can be used recursively. A structure like the following works:
code::
Ndef(\sound, { SinOsc.ar([600, 635], Ndef.ar(\sound), LFNoise1.kr(2).max(0) * 0.2) });
Ndef(\sound).play;
Ndef.clear;
::
This is because there is a feedback delay (the server's strong::block size::), usually 64 samples, so that calculation can reiterate over its own outputs. For single sample feedback, see:
code::
(Platform.resourceDir +/+ "examples/demonstrations/single_sample_feedback.scd").openDocument;
::
subsection::Using different servers
code::
// create a new server
a = Server(\foo, NetAddr("127.0.0.1", 57123)).boot.makeWindow;
Ndef(\sound, { SinOsc.ar([600, 635]) * SinOsc.kr(2).max(0) * 0.2 }).play; // play on default
Ndef(\sound -> \foo, { SinOsc.ar([700, 745]) * SinOsc.kr(2).max(0) * 0.2 }).play;// play on foo
// clear definitions
Ndef(\sound -> \foo).clear(3);
Ndef(\sound).clear(3);
a.dump; // display settings of new server
a.quit; // terminate new server
::
subsection::GUI
code::
// create a window for a given Ndef
Ndef(\sound).edit
(
Ndef(\sound, { |freq = 440, rate = 2|
SinOsc.ar(freq * [1, 1.625]) * SinOsc.kr(rate).max(0) * 0.2
}).play;
)
// set lags for controls:
Ndef(\sound).lag(\freq, 0.2, \rate, 0.5);
Ndef(\sound).clear(1);
// create a mixer for all Ndefs:
NdefMixer(s);
::
subsection::Using Associations
For a complete list, see link::Classes/NodeProxy::, and link::Reference/NodeProxy_roles::
code::
// setsrc
(
Ndef(\x,
\setsrc -> Pbind(\source,
Pseq([
{ LFTri.ar(280 * Line.kr(1.1, 0.4, rrand(2, 3)) + [0,1]) * 0.1 },
{ Pulse.ar(40 + [0,1]) * 0.1 },
{ LFTri.ar(LFTri.kr(1).round(1.0.rand) + 1 * 180 + [0,1], 0.04) * 0.3 },
], inf),
\dur, Prand([3, 2, 4], inf)
)
).play;
)
::
|