1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
class:: PV_ChainUGen
summary:: Base class for UGens that operate on FFT chains
categories:: UGens>FFT
description::
code::PV_ChainUGen:: is an abstract class, not used directly, but only its subclasses are. It represents phase-vocoder UGens - i.e. UGens which apply some kind of transformation to the frequency-domain signal produced by link::Classes/FFT::.
It encompasses all unit generators whose output is an FFT chain. This is why link::Classes/FFT:: is in this group but link::Classes/IFFT:: is not - the IFFT ugen outputs ordinary time-domain audio.
For more information on using these unit generators, see link::Guides/FFT-Overview::.
classmethods::
private:: categories
instancemethods::
private::addCopiesIfNeeded
method::fftSize
Returns the FFT chain buffer's size.
code::
(
{
var chain = FFT(LocalBuf(1024));
chain.fftSize.poll;
0.0
}.play;
)
::
method:: pvcalc
pvcalc applies a function to the frequency-domain data of an FFT chain. See link::#-pvcollect:: below for discussion of efficiency considerations. See also link::#-pvcalc2:: below, and link::Classes/UnpackFFT::.
code::
chain = chain.pvcalc(numframes, func, frombin, tobin, zeroothers)
::
argument::numframes
Number of FFT frames to process
argument::func
The function that takes two arrays as inputs (code::magnitude::, and code::phase::) and returns a resulting pair of arrays code::[magnitude, phase]::.
code::
// example function
{ | magnitudes, phases |
[mags.reverse, phases.reverse] // e.g. upside-down spectrum
}
::
argument::frombin
Range start (optional)
argument::tobin
Range end (optional)
argument::zeroothers
If set to 1 then bins outside of the range being processed are silenced.
method::pvcalc2
The method pvcalc2 is just like link::#-pvcalc:: but can combine two FFT chains.
code::
chain = chain.pvcalc2(chain2, numframes, func, frombin, tobin, zeroothers)
::
argument::chain2
The scond FFT chain.
argument::numframes
Number of FFT frames to process
argument::func
The function that takes four arrays as inputs (magnitudes1, phases1, magnitudes2, phases2) and returns a resulting pair of arrays code::[magnitude, phase]::.
code::
// example function
{ | magnitudes1, phases1, magnitudes2, phases2 |
[magnitudes1, phases2] // e.g. use the magnitudes of one, ane the phases of the other
}
::
argument::frombin
Range start (optional)
argument::tobin
Range end (optional)
argument::zeroothers
If set to 1 then bins outside of the range being processed are silenced.
method:: pvcollect
Process each bin of an FFT chain, separately, by applying a function to each bin of an FFT chain.
code::
chain = chain.pvcollect(numframes, func, frombin, tobin, zeroothers)
::
argument::numframes
Number of FFT frames to process
argument::func
The function that processes each bin. It should be a function that takes code:: magnitude, phase, bin, index :: as inputs and returns a resulting array code::[magnitude, phase]::.
code::
// example function
{ | magnitude, phase, bin, index |
// randomize magnitudes somewhat (noisier signal)
[magnitude * (5.0.rand2.dbamp), phase]
}
::
The strong::bin:: is the integer bin number, starting at 0 for DC, while strong::index:: is the iteration number, always starting with 0. You can optionally ignore the phase and only return a single (magnitude) value, in which case the phase is assumed to be left unchanged.
argument::frombin
Range start (optional)
argument::tobin
Range end (optional)
argument::zeroothers
If set to 1 then bins outside of the range being processed are silenced.
discussion::
Note that this procedure can be relatively CPU-heavy, depending on how you use it.
Using pvcollect (or its components, UnpackFFT & PackFFT) is usually less efficient than using a single "PV_" unit generator to process an FFT chain, because it involves the creation of quite a large graph of demand-rate unit generators.
If you wish to reduce the CPU impact of using this approach, try the following:
list::
## Use the frombin and tobin arguments to limit the number of FFT bins that will be included in the calculation. Often the lower FFT bins contain the loudest and/or most relevant information, so perhaps your effect sounds very similar if you ignore the higher-up bins (either leave them unprocessed, or discard them by setting the zeroothers argument to 1, which has the effect of a band-pass frequency-domain filter).
## Use a smaller FFT buffer size.
## Avoid creating ugens inside your calculation function if at all possible. For example, a deterministic ugen such as LFPar.kr(0.5, 0, 1) will be replicated once for each bin if specified inside the function, despite the fact that the output is always the same. Define it outside the calculation function and then reference it by variable name.
## Avoid unused calculations! For example, uncommenting all the different lines in the above will waste effort because many values will be calculated but not used. This cannot be optimised away during compilation. It is particularly important because all calculations are duplicated (once for each bin) so can have a significant impact on efficiency.
## If you find yourself calling pvcollect on an FFT chain more than once in series, you should definitely try to combine your processing into a single pvcollect function, to avoid unnecessary unpacking-then-packing-then-unpacking-then-packing.
::
Examples::
subsection:: pvcalc
code::
// a sound file
c.free; c = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav");
(
{
var in, chain, v;
in = PlayBuf.ar(1, c, BufRateScale.kr(c), loop: 1);
chain = FFT(LocalBuf(1024), in);
chain = chain.pvcalc(1024, {|mags, phases|
//////// Try uncommenting each of these lines in turn and re-running the synth:
[mags * {1.5.rand}.dup(mags.size), phases + {pi.rand}.dup(phases.size)]; // Arbitrary filter, arbitrary phase shift
//[mags.reverse, phases.reverse]; // Upside-down!
//[mags.differentiate, phases.differentiate]; // Differentiate along frequency axis
//[mags[30..] ++ mags[..30], phases[30..] ++ phases[..30]]; // ".rotate" doesn't work directly, but this is equivalent
}, frombin: 0, tobin: 250, zeroothers: 0);
0.5 * IFFT(chain).dup
}.play
)
::
subsection:: pvcalc2
code::
c.free; c = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav");
(
x = {
var fftsize = 1024;
var in, chain, in2, chain2, out;
in = PlayBuf.ar(1, c, BufRateScale.kr(c), loop: 1);
chain = FFT(LocalBuf(fftsize), in);
// JMcC babbling brook
in2 = ({
RHPF.ar(OnePole.ar(BrownNoise.ar, 0.99), LPF.ar(BrownNoise.ar, 14)
* 400 + 500, 0.03, 0.003) }!2)
+ ({ RHPF.ar(OnePole.ar(BrownNoise.ar, 0.99), LPF.ar(BrownNoise.ar, 20)
* 800 + 1000, 0.03, 0.005) }!2
) * 4;
chain2 = FFT(LocalBuf(fftsize), in2);
chain = chain.pvcalc2(chain2, fftsize, { |mags, phases, mags2, phases2|
[
mags * mags2 / 10,
phases2 + phases
]
}, frombin: 0, tobin: 125, zeroothers: 0);
out = IFFT(chain);
0.5 * out.dup
}.play
)
::
subsection:: pvcollect
code::
c.free; c = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav");
(
{
var in, chain, v;
in = PlayBuf.ar(1, c, BufRateScale.kr(c), loop: 1);
chain = FFT(LocalBuf(1024), in);
v = LFPar.kr(0.5).range(0.1, 1);
chain = chain.pvcollect(1024, {|mag, phase, index|
//////// Try uncommenting each of these lines in turn and re-running the synth:
//mag;
//[mag, phase];
//[mag, phase] / 3;
//[mag, phase].sqrt;
//[mag, 3.14.rand];
//[mag, LFNoise0.kr.range(0, 3.14)];
//[mag * Dseq([1, 0, 0, 1, 1, 0, 1, 0].dupEach(8), 999999999999)]; // Can even use Demand ugens! One val demanded each frame
//[mag.sqrt, 3.14.rand];
//if(index % 7 == 0, mag, 0); // Comb filter
//if(LFNoise0.kr(10) > 0.5, mag, 0);
//mag + DelayN.kr(mag, 1, v); // Spectral delay
if((index - LFPar.kr(0.1).range(2, 1024/20)).abs < 10, mag, 0); // Swept bandpass
}, frombin: 0, tobin: 250, zeroothers: 0);
0.5 * IFFT(chain).dup
}.play
)
::
|