File: Pseed.schelp

package info (click to toggle)
supercollider 1%3A3.13.0%2Brepack-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 80,292 kB
  • sloc: cpp: 476,363; lisp: 84,680; ansic: 77,685; sh: 25,509; python: 7,909; makefile: 3,440; perl: 1,964; javascript: 974; xml: 826; java: 677; yacc: 314; lex: 175; objc: 152; ruby: 136
file content (175 lines) | stat: -rw-r--r-- 4,882 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
class:: Pseed
summary:: set the random seed in subpattern
related:: Reference/randomSeed
categories:: Streams-Patterns-Events>Patterns>Language Control

description::

Set the random generator seed of the resulting stream.

ClassMethods::

method::new

argument::randSeed
integer number, pattern or stream that returns an integer number.

note::
randSeed is always treated as a pattern/stream. If you provide a single, constant seed value, it will behave as an infinite-length stream. This will cause the subpattern to be embedded an infinite number of times. Compare:

code::
// Pwhite repeats its three values forever
Pseed(1000, Pwhite(1, 10, 3)).asStream.nextN(10);

// Pwhite runs once:
// the output stream consists of three values, then 'nil' ad infinitum
Pseed(Pn(1000, 1), Pwhite(1, 10, 3)).asStream.nextN(10);
::
::

argument::pattern

Examples::

code::
a = Pseed(1972, Prand([1,2,3], inf));

b = a.asStream;
10.do({ b.next.post });

c = a.asStream;
10.do({ c.next.post });


// using a seed pattern as input:

a = Pseed(Pseq([1812, 1912], inf), Prand([1,2,3], 5));

b = a.asStream;
2.do({ 5.do({ b.next.post });"".postln;  });

c = a.asStream;
2.do({ 5.do({ c.next.post });"".postln;  });


// outer thread is independant:

a = Pseed(Prand([1534, 1600, 1798, 1986, 2005], inf), Pshuf([1, Prand([7, 9], 2), 1, 2, 3], 1));

// returns random streams
b = a.asStream;
2.do({ 5.do({ b.next.post });"".postln;  });

c = a.asStream;
2.do({ 5.do({ c.next.post });"".postln;  });


// Some examples of how Pseed can be used in music.
(
SynthDef.new(\varsaw, {
	arg dur, attack=0.01, release=1.0,
	t_gate=1, out, freq=442, cutoff=5500,
	rq=1, pan=0.0, amp=0.5, width=0.1;

	var env = EnvGen.kr(Env.perc(attack, release), t_gate, timeScale: dur, doneAction: 2);
	var sig = VarSaw.ar(freq: freq, mul: env, width: width);
	sig = RLPF.ar(sig, cutoff.clip(20.0, 20000.0), rq.clip(0.0,1.0));
	sig = Pan2.ar(sig, pan);
	Out.ar(out, sig * amp);
}).add;
)

(
Pdef(\varsawPat,
	Pseed(490, // This number is the seed.
		Pbind(*[
			instrument: \varsaw,
			attack: Plprand(0.01, 1.0),
			release: Pwrand([0.5, 8], [8, 1].normalizeSum, inf),
			dur: 1 / Pstutter(Phprand(5, 11), Plprand(5, 11)),
			freq: 100 * Plprand(1, 9),
			width: Phprand(0.0, 0.5),
			cutoff: Phprand(20, 5500),
			pan: Pmeanrand(-1.0, 1.0),
		])
	)
).play
)

// Reevaluate the above pattern to hear the same start. An infinity of variations unfold from a single number.
// Change the seed for another infinite deterministic stream of choices.


(
SynthDef(\drum, {|out, dur, t_gate =1, pew=1, sustain=1, pan, fed=0, tun, amp = 1 |
	var env, freq, sig;
	tun = ((tun>0)*tun) + ((tun<1)*3);
	freq = (tun*10).midicps;
	env = EnvGen.ar(Env.linen(0.01, 0, 1, 1, -3), t_gate, timeScale: dur , doneAction: 2);
	sig = LPF.ar(SinOscFB.ar(XLine.ar(freq.expexp(10, 2000, 1000, 8000), freq, 0.025/pew), fed), 9000);
	sig = Pan2.ar(sig, pan);
	Out.ar(out, sig * amp);
}).add
)

(
Pdef(\drumPat,
	Pseed(9223372036854775807, // This is the highest 64 bit number.
		Psync(
			Pbind(*[
				instrument: \drum,
				tun: Pstutter(Plprand(4, 8), Plprand(0.0, 8.0).round(1/8)),
				amp: Plprand(-7.5.dbamp, -1.5.dbamp),
				dur: 1 / Pstutter(Phprand(5, 11), Pwhite(5, 11)),
				legato: Plprand(0.75, 4.0),
				pan: Prand([Phprand(0.0, 0.5, 1), Plprand(0.5, 1.0, 1)], inf),
				//pew: 0.4,
				//pew: Phprand(0.4, 10.0),
			]), 1, 2.0, // Loop length is the second number here.
		)
	)
).play(quant:1);
)

/*
When Pseed wraps around a whole pattern like in the above example the values are being generated for the parameters from top to bottom.
Uncommenting the static pew value does not change the pattern but uncommenting the line below with the stochastic choice does.
The pew parameter is now receiving the value that would have gone to the tun parameter and so this alternate timeline diverges more and more
as time passes.
*/

(
Pdef(\varsawPat,
	Pbind(*[
		instrument: \varsaw,
		attack: Plprand(0.01, 1.0),
		release: Pwrand([0.5, 8], [8, 1].normalizeSum, inf),
		dur: 1 / Pseed(490, Pstutter(Phprand(5, 11), Plprand(5, 11))), // Pseed used on a single parameter.
		amp: Plprand(-18.dbamp, -12.dbamp),
		freq: 100 * Plprand(1, 9),
		width: Plprand(0.0, 0.5),
		cutoff: Phprand(20, 5500),
		pan: -1,
	])
).play(quant: 1);

Pdef(\drumPat,
	Pbind(*[
		instrument: \drum,
		tun: Pstutter(Plprand(4, 8), Plprand(0.0, 8.0).round(1/8)),
		fed: Plprand(0.0, 1.0),
		amp: Plprand(-18.dbamp, -12.dbamp),
		dur: 1 / Pseed(490, Pstutter(Phprand(5, 11), Plprand(5, 11))), // Same seed, same rhythm.
		legato: Plprand(0.75, 4.0),
		pan: 1,
	])
).play(quant:1);
)

/*
In the above example Pseed is used as a kind of "data sharing" strategy. The two patterns aren't actually sharing data. They are both
using the same seed to generate all future stochastic choices for the dur parameter.
All other parameters in the two patterns are unaffected.
*/

::