1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
class:: Pseed
summary:: set the random seed in subpattern
related:: Reference/randomSeed
categories:: Streams-Patterns-Events>Patterns>Language Control
description::
Set the random generator seed of the resulting stream.
ClassMethods::
method::new
argument::randSeed
integer number, pattern or stream that returns an integer number.
note::
randSeed is always treated as a pattern/stream. If you provide a single, constant seed value, it will behave as an infinite-length stream. This will cause the subpattern to be embedded an infinite number of times. Compare:
code::
// Pwhite repeats its three values forever
Pseed(1000, Pwhite(1, 10, 3)).asStream.nextN(10);
// Pwhite runs once:
// the output stream consists of three values, then 'nil' ad infinitum
Pseed(Pn(1000, 1), Pwhite(1, 10, 3)).asStream.nextN(10);
::
::
argument::pattern
Examples::
code::
a = Pseed(1972, Prand([1,2,3], inf));
b = a.asStream;
10.do({ b.next.post });
c = a.asStream;
10.do({ c.next.post });
// using a seed pattern as input:
a = Pseed(Pseq([1812, 1912], inf), Prand([1,2,3], 5));
b = a.asStream;
2.do({ 5.do({ b.next.post });"".postln; });
c = a.asStream;
2.do({ 5.do({ c.next.post });"".postln; });
// outer thread is independant:
a = Pseed(Prand([1534, 1600, 1798, 1986, 2005], inf), Pshuf([1, Prand([7, 9], 2), 1, 2, 3], 1));
// returns random streams
b = a.asStream;
2.do({ 5.do({ b.next.post });"".postln; });
c = a.asStream;
2.do({ 5.do({ c.next.post });"".postln; });
// Some examples of how Pseed can be used in music.
(
SynthDef.new(\varsaw, {
arg dur, attack=0.01, release=1.0,
t_gate=1, out, freq=442, cutoff=5500,
rq=1, pan=0.0, amp=0.5, width=0.1;
var env = EnvGen.kr(Env.perc(attack, release), t_gate, timeScale: dur, doneAction: 2);
var sig = VarSaw.ar(freq: freq, mul: env, width: width);
sig = RLPF.ar(sig, cutoff.clip(20.0, 20000.0), rq.clip(0.0,1.0));
sig = Pan2.ar(sig, pan);
Out.ar(out, sig * amp);
}).add;
)
(
Pdef(\varsawPat,
Pseed(490, // This number is the seed.
Pbind(*[
instrument: \varsaw,
attack: Plprand(0.01, 1.0),
release: Pwrand([0.5, 8], [8, 1].normalizeSum, inf),
dur: 1 / Pstutter(Phprand(5, 11), Plprand(5, 11)),
freq: 100 * Plprand(1, 9),
width: Phprand(0.0, 0.5),
cutoff: Phprand(20, 5500),
pan: Pmeanrand(-1.0, 1.0),
])
)
).play
)
// Reevaluate the above pattern to hear the same start. An infinity of variations unfold from a single number.
// Change the seed for another infinite deterministic stream of choices.
(
SynthDef(\drum, {|out, dur, t_gate =1, pew=1, sustain=1, pan, fed=0, tun, amp = 1 |
var env, freq, sig;
tun = ((tun>0)*tun) + ((tun<1)*3);
freq = (tun*10).midicps;
env = EnvGen.ar(Env.linen(0.01, 0, 1, 1, -3), t_gate, timeScale: dur , doneAction: 2);
sig = LPF.ar(SinOscFB.ar(XLine.ar(freq.expexp(10, 2000, 1000, 8000), freq, 0.025/pew), fed), 9000);
sig = Pan2.ar(sig, pan);
Out.ar(out, sig * amp);
}).add
)
(
Pdef(\drumPat,
Pseed(9223372036854775807, // This is the highest 64 bit number.
Psync(
Pbind(*[
instrument: \drum,
tun: Pstutter(Plprand(4, 8), Plprand(0.0, 8.0).round(1/8)),
amp: Plprand(-7.5.dbamp, -1.5.dbamp),
dur: 1 / Pstutter(Phprand(5, 11), Pwhite(5, 11)),
legato: Plprand(0.75, 4.0),
pan: Prand([Phprand(0.0, 0.5, 1), Plprand(0.5, 1.0, 1)], inf),
//pew: 0.4,
//pew: Phprand(0.4, 10.0),
]), 1, 2.0, // Loop length is the second number here.
)
)
).play(quant:1);
)
/*
When Pseed wraps around a whole pattern like in the above example the values are being generated for the parameters from top to bottom.
Uncommenting the static pew value does not change the pattern but uncommenting the line below with the stochastic choice does.
The pew parameter is now receiving the value that would have gone to the tun parameter and so this alternate timeline diverges more and more
as time passes.
*/
(
Pdef(\varsawPat,
Pbind(*[
instrument: \varsaw,
attack: Plprand(0.01, 1.0),
release: Pwrand([0.5, 8], [8, 1].normalizeSum, inf),
dur: 1 / Pseed(490, Pstutter(Phprand(5, 11), Plprand(5, 11))), // Pseed used on a single parameter.
amp: Plprand(-18.dbamp, -12.dbamp),
freq: 100 * Plprand(1, 9),
width: Plprand(0.0, 0.5),
cutoff: Phprand(20, 5500),
pan: -1,
])
).play(quant: 1);
Pdef(\drumPat,
Pbind(*[
instrument: \drum,
tun: Pstutter(Plprand(4, 8), Plprand(0.0, 8.0).round(1/8)),
fed: Plprand(0.0, 1.0),
amp: Plprand(-18.dbamp, -12.dbamp),
dur: 1 / Pseed(490, Pstutter(Phprand(5, 11), Plprand(5, 11))), // Same seed, same rhythm.
legato: Plprand(0.75, 4.0),
pan: 1,
])
).play(quant:1);
)
/*
In the above example Pseed is used as a kind of "data sharing" strategy. The two patterns aren't actually sharing data. They are both
using the same seed to generate all future stochastic choices for the dur parameter.
All other parameters in the two patterns are unaffected.
*/
::
|