1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
|
CLASS::SequenceableCollection
summary::Abstract superclass of integer indexable collections
categories::Collections>Ordered
DESCRIPTION::
SequenceableCollection is a subclass of Collection whose elements can be indexed by an Integer. It has many useful subclasses; link::Classes/Array:: and link::Classes/List:: are amongst the most commonly used.
CLASSMETHODS::
copymethod:: Collection *fill
method::series
Fill a SequenceableCollection with an arithmetic series.
code::
Array.series(5, 10, 2);
::
method::geom
Fill a SequenceableCollection with a geometric series.
code::
Array.geom(5, 1, 3);
::
method::fib
Fill a SequenceableCollection with a fibonacci series.
code::
Array.fib(5);
Array.fib(5, 2, 32); // start from 32 with step 2.
::
argument::size
the number of values in the collection
argument::a
the starting step value
argument::b
the starting value
method::rand
Fill a SequenceableCollection with random values in the range strong::minVal:: to strong::maxVal::.
code::
Array.rand(8, 1, 100);
::
method::rand2
Fill a SequenceableCollection with random values in the range -strong::val:: to +strong::val::.
code::
Array.rand2(8, 100);
::
method::linrand
Fill a SequenceableCollection with random values in the range strong::minVal:: to strong::maxVal:: with a linear distribution.
code::
Array.linrand(8, 1, 100);
::
method::exprand
Fill a SequenceableCollection with random values in the range strong::minVal:: to strong::maxVal:: with exponential distribution.
code::
Array.exprand(8, 1, 100);
::
method::interpolation
Fill a SequenceableCollection with the interpolated values between the strong::start:: and strong::end:: values.
code::
Array.interpolation(5, 3.2, 20.5);
::
INSTANCEMETHODS::
method::|@|
synonym for link::Classes/ArrayedCollection#-clipAt::.
code::
[3, 4, 5]|@|6;
::
method::@@
synonym for link::Classes/ArrayedCollection#-wrapAt::.
code::
[3, 4, 5]@@6;
[3, 4, 5]@@ -1;
[3, 4, 5]@@[6, 8]
::
method::@|@
synonym for link::Classes/ArrayedCollection#-foldAt::.
code::
[3, 4, 5]@|@[6, 8];
::
method::first
Return the first element of the collection.
code::
[3, 4, 5].first;
::
method::last
Return the last element of the collection.
code::
[3, 4, 5].last;
::
method::putFirst, putLast
Place strong::item:: at the first / last index in the collection. Note that if the collection is empty (and therefore has no indexed slots) the item will not be added.
code::
[3, 4, 5].putFirst(100);
[3, 4, 5].putLast(100);
::
method::indexOf
Return the index of an strong::item:: in the collection, or nil if not found. Elements are checked for identity (not for equality).
code::
[3, 4, 100, 5].indexOf(100);
[3, 4, \foo, \bar].indexOf(\foo);
::
method::indexOfEqual
Return the index of something in the collection that equals the strong::item::, or nil if not found.
code::
[3, 4, "foo", "bar"].indexOfEqual("foo");
::
method::indicesOfEqual
Return an array of indices of things in the collection that equal the strong::item::, or nil if not found.
code::
y = [7, 8, 7, 6, 5, 6, 7, 6, 7, 8, 9];
y.indicesOfEqual(7);
y.indicesOfEqual(5);
::
method::indexOfGreaterThan
Return the first index containing an strong::item:: which is greater than strong::item::.
code::
y = List[ 10, 5, 77, 55, 12, 123];
y.indexOfGreaterThan(70);
::
method::selectIndices
Return a new collection of same type as receiver which consists of all indices of those elements of the receiver for which function answers code::true::. The function is passed two arguments, the item and an integer index.
code::
#[a, b, c, g, h, h, j, h].selectIndices({|item, i| item === \h})
::
If you want to control what type of collection is returned, use link::#-selectIndicesAs::
method::selectIndicesAs
Return a new collection of type emphasis::class:: which consists of all indices of those elements of the receiver for which function answers code::true::. The function is passed two arguments, the item and an integer index.
code::
#[a, b, c, g, h, h, j, h].selectIndicesAs({|item, i| item === \h}, Set)
::
method::rejectIndices
Return a new collection of same type as receiver which consists of all indices of those elements of the receiver for which function answers code::false::. The function is passed two arguments, the item and an integer index.
code::
#[a, b, c, g, h, h, j, h].rejectIndices({|item, i| item === \h})
::
If you want to control what type of collection is returned, use link::#-rejectIndicesAs::
method::rejectIndicesAs
Return a new collection of type emphasis::class:: which consists of all indices of those elements of the receiver for which function answers code::false::. The function is passed two arguments, the item and an integer index.
code::
#[a, b, c, g, h, h, j, h].rejectIndicesAs({|item, i| item === \h}, Set)
::
copymethod:: Collection -maxIndex
copymethod:: Collection -minIndex
method::find
If the strong::sublist:: exists in the receiver (in the specified order), at an offset greater than or equal to the initial strong::offset::, then return the starting index. The sublist must be of the same kind (class) as the list to search in.
Elements are checked for equality (not for identity).
code::
y = [7, 8, 7, 6, 5, 6, 7, 6, 7, 8, 9];
y.find([7, 6, 5]);
::
method::findAll
Similar to link::#-find:: but returns an array of all the indices at which the sequence is found.
code::
y = [7, 8, 7, 6, 5, 6, 7, 6, 7, 8, 9];
y.findAll([7, 6]);
::
method::indexIn
Returns the closest index of the value in the collection (collection must be sorted).
code::
[2, 3, 5, 6].indexIn(5.2);
::
method::indexInBetween
Returns a linearly interpolated float index for the value (collection must be sorted). Inverse operation is link::#-blendAt::.
code::
x = [2, 3, 5, 6].indexInBetween(5.2);
[2, 3, 5, 6].blendAt(x);
::
method::blendAt
Returns a linearly interpolated value between the two closest indices. Inverse operation is link::#-indexInBetween::.
code::
x = [2, 5, 6].blendAt(0.4);
::
method::copyRange
Return a new SequenceableCollection which is a copy of the indexed slots of the receiver from strong::start:: to strong::end::. If strong::end:: < strong::start::, an empty collection is returned.
code::
(
var y, z;
z = [1, 2, 3, 4, 5];
y = z.copyRange(1, 3);
z.postln;
y.postln;
)
::
warning:: code::x.copyRange(a, b):: is strong::not:: equivalent to code::x[a..b]::. The latter compiles to link::Classes/ArrayedCollection#-copySeries::, which has different behavior when strong::end:: < strong::start::. ::
method::copyToEnd
Return a new SequenceableCollection which is a copy of the indexed slots of the receiver from strong::start:: to the end of the collection.
code::x.copyToEnd(a):: can also be written as code::x[a..]::
method::copyFromStart
Return a new SequenceableCollection which is a copy of the indexed slots of the receiver from the start of the collection to strong::end::.
code::x.copyFromStart(a):: can also be written as code::x[..a]::
method::remove
Remove strong::item:: from collection. Elements are checked for identity (not for equality).
method::take
Remove and return strong::item:: from collection. The last item in the collection will move to occupy the vacated slot (and the collection size decreases by one). See also takeAt, defined for link::Classes/ArrayedCollection#-takeAt::. Elements are checked for identity (not for equality).
warning:: code::take(item):: works on Arrays but not on Lists, because the internally called method code::takeAt(item):: is not defined for Lists. ::
code::
a = [11, 12, 13, 14, 15];
a.take(12);
a;
::
method::obtain
Retrieve an element from a given index (like link::Classes/SequenceableCollection#-at::). This method is also implemented in link::Classes/Object::, so that you can use it in situations where you don't want to know if the receiver is a collection or not. See also: link::Classes/SequenceableCollection#-instill::
argument::index
The index at which to look for an element
argument::default
If index exceeds collection size, or receiver is nil, return this instead
code::
(
a = [10, 20, 30];
b = [10, 20];
c = 7;
);
// obtain third element, if outside bounds return 1
a.obtain(2, 1);
b.obtain(2, 1);
c.obtain(2, 1);
::
method::instill
Put an element at a given index (like link::Classes/SequenceableCollection#-put::). This method is also implemented in link::Classes/Object::, so that you can use it in situations where you don't want to know if the receiver is a collection or not. It will always return a new collection. See also: link::Classes/SequenceableCollection#-obtain::
argument::index
The index at which to put the item
argument::item
The object to put into the new collection
argument::default
If the index exceeds the current collection's size, extend the collection with this element
code::
(
a = [10, 20, 30, 40];
b = [10, 20];
c = 7;
);
a.instill(2, -1);
b.instill(2, -1);
c.instill(2, -1);
// providing a default value
c.instill(2, -1, 0);
::
method::keep
Keep the first strong::n:: items of the array. If strong::n:: is negative, keep the last -strong::n:: items.
code::
a = [1, 2, 3, 4, 5];
a.keep(3);
a.keep(-3);
::
method::drop
Drop the first strong::n:: items of the array. If strong::n:: is negative, drop the last -strong::n:: items.
code::
a = [1, 2, 3, 4, 5];
a.drop(3);
a.drop(-3);
::
method::join
Returns a link::Classes/String:: formed by connecting all the elements of the receiver, with strong::joiner:: inbetween. See also link::Classes/String#-split:: as the complementary operation.
code::
["m", "ss", "ss", "pp", ""].join("i").postcs;
"mississippi".split("i").postcs;
::
method::flat
Returns a collection from which all nesting has been flattened.
code::
[[1, 2, 3], [[4, 5], [[6]]]].flat; // [ 1, 2, 3, 4, 5, 6 ]
[1, 2, [3, 4, [5, 6, [7, 8, [9, 0]]]]].flat; // [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 ]
::
method::flatten
Returns a collection from which strong::numLevels:: of nesting has been flattened.
argument::numLevels
Specifies how many levels downward (inward) to flatten. Zero returns the original.
code::
a = [1, 2, [3, 4, [5, 6, [7, 8, [9, 0]]]]];
a.flatten(1); // [ 1, 2, [ 3, 4, [ 5, 6, [ 7, 8, [ 9, 0 ] ] ] ] ]
a.flatten(2); // [ 1, 2, 3, 4, 5, 6, [ 7, 8, [ 9, 0 ] ] ]
a.flatten(3); // [ 1, 2, 3, 4, 5, 6, 7, 8, [ 9, 0 ] ]
a.flatten(4); // [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 ]
::
method::flatten2
A symmetric version of link::#-flatten::. For a negative code::numLevels::, it flattens starting from the innermost arrays.
argument::numLevels
Specifies how many levels downward (inward) or upward (outward) to flatten.
code::
a = [1, 2, [3, 4, [5, 6, [7, 8, [9, 0]]]]];
a.flatten2(4); // [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 ]
a.flatten2(3); // [ 1, 2, 3, 4, 5, 6, 7, 8, [ 9, 0 ] ]
a.flatten2(2); // [ 1, 2, 3, 4, 5, 6, [ 7, 8, [ 9, 0 ] ] ]
a.flatten2(1); // [ 1, 2, 3, 4, [ 5, 6, [ 7, 8, [ 9, 0 ] ] ] ]
a.flatten2(0); // [ 1, 2, [ 3, 4, [ 5, 6, [ 7, 8, [ 9, 0 ] ] ] ] ]
a.flatten2(-1); // [ 1, 2, [ 3, 4, [ 5, 6, [ 7, 8, 9, 0 ] ] ] ]
a.flatten2(-2); // [ 1, 2, [ 3, 4, [ 5, 6, 7, 8, 9, 0 ] ] ]
a.flatten2(-3); // [ 1, 2, [ 3, 4, 5, 6, 7, 8, 9, 0 ] ]
a.flatten2(-4); // [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 ]
::
method::flatBelow
Flatten all subarrays deeper than strong::level::.
argument::level
Specifies from what level onward to flatten.
level 0 is outermost, so flatBelow(0) is like flat.
code::
a = [1, 2, [3, 4, [5, 6, [7, 8, [9, 0]]]]];
a.flatBelow(0); // [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 ]
a.flatBelow(1); // [ 1, 2, [ 3, 4, 5, 6, 7, 8, 9, 0 ] ]
a.flatBelow(2); // [ 1, 2, [ 3, 4, [ 5, 6, 7, 8, 9, 0 ] ] ]
// to set the level below which to flatten from the deepest level up,
// one can use coll.maxDepth. E.g. to flatten only the innermost level:
a.flatBelow( (a.maxDepth - 1) - 1);
// for lowest two levels:
a.flatBelow( (a.maxDepth - 1) - 2);
::
method::flop
Invert rows and columns in a two dimensional Collection (turn inside out). See also: link::Classes/Function::.
code::
[[1, 2, 3], [4, 5, 6]].flop;
[[1, 2, 3], [4, 5, 6], [7, 8]].flop; // shorter array wraps
[].flop; // result is always 2-d.
::
Note that the innermost arrays are not copied:
code::
a = [1, 2];
x = [[[a, 5], [a, 10]], [[a, 50, 60]]].flop;
a[0] = pi;
x // pi is everywhere
::
method::flopWith
Flop with a user defined function. Can be used to collect over several collections in parallel.
code::
[[1, 2, 3], [4, 5, 6]].flopWith(_+_);
[[1, 2, 3], 1, [7, 8]].flopWith{ |a,b,c| a+b+c }; // shorter array wraps
// typical use case (pseudocode)
[synths, buffers].flopWith{ |a,b| a.set(\buf, b) }
::
argument::func
A function taking as many arguments as elements in the array.
method::flopTogether
Invert rows and columns in a an array of dimensional Collections (turn inside out), so that they all match up in size, but remain separated.
code::
(
a = flopTogether(
[[1, 2, 3], [4, 5, 6, 7, 8]] * 100,
[[1, 2, 3], [4, 5, 6], [7, 8]],
[1000]
)
);
a.collect(_.size); // sizes are the same
a.collect(_.shape) // shapes can be different
::
method::flopDeep
Fold dimensions in a multi-dimensional Collection (turn inside out).
argument::rank
The depth (dimension) from which the array is inverted inside-out.
code::
[[1, 2, 3], [[41, 52], 5, 6]].flopDeep(2);
[[1, 2, 3], [[41, 52], 5, 6]].flopDeep(1);
[[1, 2, 3], [[41, 52], 5, 6]].flopDeep(0);
[[1, 2, 3], [[41, 52], 5, 6]].flopDeep; // without argument, flop from the deepest level
[[[10, 100, 1000], 2, 3], [[41, 52], 5, 6]].flopDeep(2); // shorter array wraps
[].flopDeep(1); // result is always one dimension higher.
[[]].flopDeep(4);
::
note::Note that, just like in flop, the innermost arrays (deeper than rank) are not copied.::
code::
a = [1, 2];
x = [[[a, 5], [a, 10]], [[a, 50, 60]]].flopDeep(1);
a[0] = pi;
x // pi is everywhere
::
method::maxSizeAtDepth
Returns the maximum size of all subarrays at a certain depth (dimension)
argument::rank
The depth at which the size of the arrays is measured
code::
[[1, 2, 3], [[41, 52], 5, 6], 1, 2, 3].maxSizeAtDepth(2);
[[1, 2, 3], [[41, 52], 5, 6], 1, 2, 3].maxSizeAtDepth(1);
[[1, 2, 3], [[41, 52], 5, 6], 1, 2, 3].maxSizeAtDepth(0);
[].maxSizeAtDepth(0);
[[]].maxSizeAtDepth(0);
[[]].maxSizeAtDepth(1);
::
method::maxDepth
Returns the maximum depth of all subarrays.
argument::max
Internally used only.
code::
[[1, 2, 3], [[41, 52], 5, 6], 1, 2, 3].maxDepth
::
method::isSeries
Returns true if the collection is an arithmetic series.
argument::step
Step size to look for. If none is given, any step size will match.
code::
[ 0, 1, 2, 3, 4, 5 ].isSeries; // true
[ 1.5, 2.5, 3.5, 4.5, 5.5, 6.5 ].isSeries; // true
[ 0, 1, 4, 5 ].isSeries; // false
[ 0, 3, 6, 9, 12, 15 ].isSeries; // true
[ 0, 3, 6, 9, 12, 15 ].isSeries(1); // false
[ 2 ] // true
[ ] // true (empty sequence)
::
method::resamp0
Returns a new Collection of the desired length, with values resampled evenly-spaced from the receiver without interpolation.
code::
[1, 2, 3, 4].resamp0(12);
[1, 2, 3, 4].resamp0(2);
::
method::resamp1
Returns a new Collection of the desired length, with values resampled evenly-spaced from the receiver with linear interpolation.
code::
[1, 2, 3, 4].resamp1(12);
[1, 2, 3, 4].resamp1(3);
::
method::choose
Choose an element from the collection at random.
code::
[1, 2, 3, 4].choose;
::
method::wchoose
Choose an element from the collection at random using a list of probabilities or weights. The weights must sum to 1.0.
code::
[1, 2, 3, 4].wchoose([0.1, 0.2, 0.3, 0.4]);
::
method::sort
Sort the contents of the collection using the comparison function argument. The function should take two elements as arguments and return true if the first argument should be sorted before the second argument. If the function is nil, the following default function is used. { arg a, b; a < b }
code::
[6, 2, 1, 7, 5].sort;
[6, 2, 1, 7, 5].sort({ arg a, b; a > b }); // reverse sort
::
method::sortBy
Sort the contents of the collection using the key strong::key::, which is assumed to be found inside each element of the receiver.
code::
(
a = [
Dictionary[\a->5, \b->1, \c->62],
Dictionary[\a->2, \b->9, \c->65],
Dictionary[\a->8, \b->5, \c->68],
Dictionary[\a->1, \b->3, \c->61],
Dictionary[\a->6, \b->7, \c->63]
]
)
a.sortBy(\b);
a.sortBy(\c);
::
method::order
Return an array of indices that would sort the collection into order. strong::function:: is treated the same way as for the link::#-sort:: method.
code::
[6, 2, 1, 7, 5].order;
::
method::swap
Swap two elements in the collection at indices strong::i:: and strong::j::.
method::pairsDo
Calls function for each subsequent pair of elements in the SequentialCollection. The function is passed the two elements and an index.
code::
[1, 2, 3, 4, 5].pairsDo({ arg a, b; [a, b].postln; });
::
method::doAdjacentPairs
Calls function for every adjacent pair of elements in the SequenceableCollection. The function is passed the two adjacent elements and an index.
code::
[1, 2, 3, 4, 5].doAdjacentPairs({ arg a, b; [a, b].postln; });
::
method::separate
Separates the collection into sub-collections by calling the function for each adjacent pair of elements. If the function returns true, then a separation is made between the elements.
code::
[1, 2, 3, 5, 6, 8, 10].separate({ arg a, b; (b - a) > 1 }).postcs;
::
method::clump
Separates the collection into sub-collections by separating every groupSize elements.
code::
[1, 2, 3, 4, 5, 6, 7, 8].clump(3).postcs;
::
method::clumps
Separates the collection into sub-collections by separating elements into groupings whose size is given by integers in the groupSizeList.
code::
[1, 2, 3, 4, 5, 6, 7, 8].clumps([1, 2]).postcs;
::
method::curdle
Separates the collection into sub-collections by randomly separating elements according to the given probability.
code::
[1, 2, 3, 4, 5, 6, 7, 8].curdle(0.3).postcs;
::
method::integrate
Returns a collection with the incremental sums of all elements.
code::
[3, 4, 1, 1].integrate;
::
method::differentiate
Returns a collection with the pairwise difference between all elements.
code::
[3, 4, 1, 1].differentiate;
::
method::reduce
Applies the method named by operator to the first and second elements of the collection, and then applies the method to the result and to the third element of the collection, then applies the method to the result and to the fourth element of the collection, and so on, until the end of the array.
If the collection contains only one element, it is returned as the result. If the collection is empty, returns code::nil::.
argument::operator
May be a link::Classes/Function:: (taking two or three arguments) or a link::Classes/Symbol:: (method selector).
code::
[3, 4, 5, 6].reduce('*'); // this is the same as [3, 4, 5, 6].product
[3, 4, 5, 6].reduce(\lcm); // Lowest common multiple of the whole set of numbers
["d", "e", (0..9), "h"].reduce('++'); // concatenation
[3, 4, 5, 6].reduce({ |a, b| sin(a) * sin(b) }); // product of sines
::
argument::adverb
An optional adverb to be used together with the operator (see link::Reference/Adverbs::). If the operator is a functions, the adverb is passed as a third argument.
code::
// compare:
[1, 2] *.x [10, 20, 30]
[[1, 2], [10, 20, 30]].reduce('*', 'x')
[[1, 2], [10, 20, 30], [1000, 2000]].reduce('+', 'x') // but you can combine more
::
method::convertDigits
Returns an integer resulting from interpreting the elements as digits to a given base (default 10). See also asDigits in link::Classes/Integer#-asDigits:: for the complementary method.
code::
[1, 0, 0, 0].convertDigits;
[1, 0, 0, 0].convertDigits(2);
[1, 0, 0, 0].convertDigits(3);
::
method::hammingDistance
Returns the count of array elements that are not equal in identical positions. http://en.wikipedia.org/wiki/Hamming_distance
The collections are not wrapped - if one array is shorter than the other, the difference in size should be included in the count.
code::
[0, 0, 0, 1, 1, 1, 0, 1, 0, 0].hammingDistance([0, 0, 1, 1, 0, 0, 0, 0, 1, 1]);
"SuperMan".hammingDistance("SuperCollider");
::
subsection:: Fuzzy comparisons
With fuzzy comparisons, the arrays do not need to match exactly. We can check how similar they are, and make decisions based on that. This is the magic behind autocorrection.
method::editDistance
Returns the minimum number of changes to modify this teletype::SequenceableCollection:: into the other teletype::SequenceableCollection::.
A change can be: an addition, a deletion, or a substitution.
This is known as the Levenshtein Distance and is implemented in SuperCollider using the Wagner–Fischer algorithm.
The default comparison uses strong::identity:: - see link::Classes/Object#-==:: and link::Classes/Object#-===::
Where both arrays are raw arrays (String, Int16Array, Int32Array, FloatArray etc., or any derived classes), like comparing two strings, a faster primitive will be used to calculate the distance.
code::
"hello".editDistance("hallo"); // 1 (substitution)
"hello".editDistance("hell"); // 1 (deletion)
"hello".editDistance("helloo"); // 1 (addition)
"hello".editDistance("hllo"); // 1 (removal)
"hello".editDistance("haldo"); // 2 (substitutions)
::
In cases where the arrays are of different types, it will fall back to a slower, non-primitive implementation.
code::
// String vs Array
"hello".editDistance([$h, $e, $l, $l, $o]);
::
For cases that require comparisons other than identity, the optional teletype::compareFunc:: can be given to compare elements. This function will be passed two arguments, representing a single element from each array to compare, and this function must return a boolean as to whether or not the elements are equal.
code::
// Using compareFunc for case insensitive comparisons
"HeLLO".editDistance("HELLO", { |a, b|
a.toLower == b.toLower;
});
::
note::
Specifying a teletype::compareFunc:: will bypass the primitive and may take significantly longer to execute for larger arrays.
::
argument::other
The teletype::SequenceableCollection:: to compare against
argument::compareFunc
An optional comparison function to use for each element. It will be provided two arguments, and the function must return a boolean as to whether or not they are the same. Default value is teletype::nil::, which will use strong::identity:: (not equality) to compare elements.
code::
[1,2,3,4].editDistance([2,3,4,5], { | a, b |
a == b;
});
::
method::similarity
Returns a value between 0 and 1 representing the percentage similarity between this teletype::SequenceableCollection:: and the other teletype::SequenceableCollection::.
A value of 1 means they are exactly the same, a value of 0 means they are completely different.
This is calculated based on the link::#-editDistance::
code::
"hello".similarity("hello"); // 1
"hello".similarity("asdf"); // 0
"word".similarity("wodr"); // 0.5
::
argument::other
The code::SequenceableCollection:: to compare against
argument::compareFunc
An optional compareFunc to be used to calculate the edit distance (see link::#-editDistance::)
private::prEditDistance
private::prLevenshteinDistance
subsection::Math Support - Unary Messages
All of the following messages send the message link::#-performUnaryOp:: to the receiver with the unary message selector as an argument.
method::neg, reciprocal, bitNot, abs, asFloat, ceil, floor, frac, sign, squared, cubed, sqrt, exp, midicps, cpsmidi, midiratio, ratiomidi, ampdb, dbamp, octcps, cpsoct, log, log2, log10, sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, rand, rand2, linrand, bilinrand, sum3rand, distort, softclip, coin, even, odd, isPositive, isNegative, isStrictlyPositive, real, imag, magnitude, magnitudeApx, phase, angle, rho, theta, asFloat, asInteger
method::performUnaryOp
Creates a new collection of the results of applying the selector to all elements in the receiver.
code::
[1, 2, 3, 4].neg;
[1, 2, 3, 4].reciprocal;
::
subsection::Math Support - Binary Messages
All of the following messages send the message link::#-performBinaryOp:: to the receiver with the binary message selector and the second operand as arguments.
method:: +, -, *, /, div, min, max, <, <=, >, >=, bitXor, lcm, gcd, round, trunc, atan2, hypot, ring1, ring2, ring3, ring4, difsqr, sumsqr, sqrdif, absdif, amclip, scaleneg, clip2, excess, rrand, exprand
method:: %, **, &, |, >>, +>>, <!
method::performBinaryOp
Creates a new collection of the results of applying the selector with the operand to all elements in the receiver. If the operand is a collection then elements of that collection are paired with elements of the receiver.
code::
([1, 2, 3, 4] * 10);
([1, 2, 3, 4] * [4, 5, 6, 7]);
::
subsection::Math Support - Special Functions
A variety of Special Functions are supplied by the Boost C++ library. The library's
link::http://www.boost.org/doc/libs/1_66_0/libs/math/doc/html/special.html##online documentation::
serves as the primary reference for the following functions. The methods
here match closely with those found in the source library, as do argument names.
Below you'll find descriptions of the functions and their bounds, but for
visualizing the functions, have a look in link::Guides/Tour-of-Special-Functions::.
note::The following methods are documented slightly clearer in
link::Classes/SimpleNumber#Special Functions:: using functional notation.
As of this writing, a bug in the help file formatting misleadingly documents
the methods in receiver notation (methods preceded by code::.::), but should
be read to suggests the usage: code::foo([a], [b])::. The equivalent receiver
notation is: code::[a].foo([b])::. Note that those methods with only one argument erroneously omit that
argument from the argument list; each element in the collection is implicitly
passed as the method's argument, e.g. code::foo([a]):: or code::[a].foo::::
warning::Many of the functions are only valid in certain numerical ranges. For the most part, error handling
happens in the underlying boost functions. While these errors are often obtuse, you'll usually find
a useful message at the end of the error regarding proper ranges and the erroneous value supplied.
Refer to the online documentation for more detailed descriptions, and the
link::Guides/Tour-of-Special-Functions:: for plots showing ranges and asymptotes.::
copymethod:: SimpleNumber -bernouliB2n
copymethod:: SimpleNumber -tangentT2n
copymethod:: SimpleNumber -tgamma
copymethod:: SimpleNumber -tgamma1pm1
copymethod:: SimpleNumber -lgamma
copymethod:: SimpleNumber -digamma
copymethod:: SimpleNumber -trigamma
copymethod:: SimpleNumber -polygamma
copymethod:: SimpleNumber -tgammaRatio
copymethod:: SimpleNumber -tgammaDeltaRatio
copymethod:: SimpleNumber -gammaP
copymethod:: SimpleNumber -gammaQ
copymethod:: SimpleNumber -tgammaLower
copymethod:: SimpleNumber -tgammaUpper
copymethod:: SimpleNumber -gammaPInv
copymethod:: SimpleNumber -gammaQInv
copymethod:: SimpleNumber -gammaPInvA
copymethod:: SimpleNumber -gammaQInvA
copymethod:: SimpleNumber -gammaPDerivative
copymethod:: SimpleNumber -gammaQDerivative
copymethod:: SimpleNumber -factorial
copymethod:: SimpleNumber -doubleFactorial
copymethod:: SimpleNumber -risingFactorial
copymethod:: SimpleNumber -fallingFactorial
copymethod:: SimpleNumber -binomialCoefficient
copymethod:: SimpleNumber -beta
copymethod:: SimpleNumber -ibeta
copymethod:: SimpleNumber -ibetaC
copymethod:: SimpleNumber -betaFull
copymethod:: SimpleNumber -betaFullC
copymethod:: SimpleNumber -ibetaInv
copymethod:: SimpleNumber -ibetaCInv
copymethod:: SimpleNumber -ibetaInvA
copymethod:: SimpleNumber -ibetaCInvA
copymethod:: SimpleNumber -ibetaInvB
copymethod:: SimpleNumber -ibetaCInvB
copymethod:: SimpleNumber -ibetaDerivative
copymethod:: SimpleNumber -erf
copymethod:: SimpleNumber -erfC
copymethod:: SimpleNumber -erfInv
copymethod:: SimpleNumber -erfCInv
copymethod:: SimpleNumber -legendreP
copymethod:: SimpleNumber -legendrePPrime
copymethod:: SimpleNumber -legendrePZeros
copymethod:: SimpleNumber -legendrePAssoc
copymethod:: SimpleNumber -legendreQ
copymethod:: SimpleNumber -laguerre
copymethod:: SimpleNumber -laguerreAssoc
copymethod:: SimpleNumber -hermite
copymethod:: SimpleNumber -chebyshevT
copymethod:: SimpleNumber -chebyshevU
copymethod:: SimpleNumber -chebyshevTPrime
copymethod:: SimpleNumber -chebyshevTZeros
copymethod:: SimpleNumber -sphericalHarmonic
copymethod:: SimpleNumber -sphericalHarmonicR
copymethod:: SimpleNumber -sphericalHarmonicI
copymethod:: SimpleNumber -cylBesselJ
copymethod:: SimpleNumber -cylNeumann
copymethod:: SimpleNumber -cylBesselJZero
copymethod:: SimpleNumber -cylNeumannZero
copymethod:: SimpleNumber -cylBesselI
copymethod:: SimpleNumber -cylBesselK
copymethod:: SimpleNumber -sphBessel
copymethod:: SimpleNumber -sphNeumann
copymethod:: SimpleNumber -cylBesselJPrime
copymethod:: SimpleNumber -cylNeumannPrime
copymethod:: SimpleNumber -cylBesselIPrime
copymethod:: SimpleNumber -cylBesselKPrime
copymethod:: SimpleNumber -sphBesselPrime
copymethod:: SimpleNumber -sphNeumannPrime
copymethod:: SimpleNumber -cylHankel1
copymethod:: SimpleNumber -cylHankel2
copymethod:: SimpleNumber -sphHankel1
copymethod:: SimpleNumber -sphHankel2
copymethod:: SimpleNumber -airyAi
copymethod:: SimpleNumber -airyBi
copymethod:: SimpleNumber -airyAiPrime
copymethod:: SimpleNumber -airyBiPrime
copymethod:: SimpleNumber -airyAiZero
copymethod:: SimpleNumber -airyBiZero
copymethod:: SimpleNumber -ellintRf
copymethod:: SimpleNumber -ellintRd
copymethod:: SimpleNumber -ellintRj
copymethod:: SimpleNumber -ellintRc
copymethod:: SimpleNumber -ellintRg
copymethod:: SimpleNumber -ellint1
copymethod:: SimpleNumber -ellint1C
copymethod:: SimpleNumber -ellint2
copymethod:: SimpleNumber -ellint2C
copymethod:: SimpleNumber -ellint3
copymethod:: SimpleNumber -ellint3C
copymethod:: SimpleNumber -ellintD
copymethod:: SimpleNumber -ellintDC
copymethod:: SimpleNumber -jacobiZeta
copymethod:: SimpleNumber -heumanLambda
copymethod:: SimpleNumber -jacobiCd
copymethod:: SimpleNumber -jacobiCn
copymethod:: SimpleNumber -jacobiCs
copymethod:: SimpleNumber -jacobiDc
copymethod:: SimpleNumber -jacobiDn
copymethod:: SimpleNumber -jacobiDs
copymethod:: SimpleNumber -jacobiNc
copymethod:: SimpleNumber -jacobiNd
copymethod:: SimpleNumber -jacobiNs
copymethod:: SimpleNumber -jacobiSc
copymethod:: SimpleNumber -jacobiSd
copymethod:: SimpleNumber -jacobiSn
copymethod:: SimpleNumber -zeta
copymethod:: SimpleNumber -expintEn
copymethod:: SimpleNumber -expintEi
copymethod:: SimpleNumber -sinPi
copymethod:: SimpleNumber -cosPi
copymethod:: SimpleNumber -log1p
copymethod:: SimpleNumber -expm1
copymethod:: SimpleNumber -cbrt
copymethod:: SimpleNumber -sqrt1pm1
copymethod:: SimpleNumber -powm1
copymethod:: SimpleNumber -sincPi
copymethod:: SimpleNumber -sinhcPi
copymethod:: SimpleNumber -asinh
copymethod:: SimpleNumber -acosh
copymethod:: SimpleNumber -atanh
copymethod:: SimpleNumber -owensT
subsection::Multichannel wrappers
All of the following messages are performed on the elements of this collection, using link::Classes/Object#-multiChannelPerform::.
The result depends on the objects in the collection, but the main use case is for link::Classes/UGen::s.
See also link::Guides/Multichannel-Expansion::
method::clip, wrap, fold, prune, linlin, linexp, explin, expexp, lincurve, curvelin, bilin, biexp, range, exprange, unipolar, bipolar, lag, lag2, lag3, lagud, lag2ud, lag3ud, varlag, slew, blend, checkBadValues
Calls code:: this.multiChannelPerform(selector, *args) :: where selector is the name of the message.
method::multichannelExpandRef
This method is called internally on inputs to UGens that take multidimensional arrays, like link::Classes/Klank:: and it allows proper multichannel expansion even in those cases. For SequenceableCollection, this returns the collection itself, assuming that it contains already a number of Refs. See link::Classes/Ref:: for the corresponding method implementation.
argument::rank
The depth at which the list is expanded. For instance the Klank spec has a rank of 2. For more examples, see link::Classes/SequenceableCollection#-flopDeep::
code::
`([[[100, 200], 500], nil, [[[0.01, 0.3], 0.8]]]).multichannelExpandRef(2);
[`[[100, 200], nil, [0.2, 0.8]], `[[130, 202], nil, [0.2, 0.5]]].multichannelExpandRef(2);
::
subsection:: Rhythm-lists
method:: convertRhythm
Convert a rhythm-list to durations.
discussion::
supports a variation of Mikael Laurson's rhythm list RTM-notation. footnote::
see Laurson and Kuuskankare's 2003, "From RTM-notation to ENP-score-notation"
http://jim2003.agglo-montbeliard.fr/articles/laurson.pdf
::
The method converts a collection of the form code:: [beat-count, [rtm-list], repeats] :: to a link::Classes/List:: of link::Classes/Float::s. A negative integer within the rtm-list equates to a value tied over to the duration following. The method is recursive in that any subdivision within the rtm-list can itself be a nested convertRhythm collection (see example below). The repeats integer has a default value of 1.
If the divisions in the rtm-list are events, the event durations are interpreted as relative durations, and a list of events is returned.
code::
// using numbers as score
[3, [1, 2, 1], 1].convertRhythm; // List[ 0.75, 1.5, 0.75 ]
[2, [1, 3, [1, [2, 1, 1, 1]], 1, 3], 1].convertRhythm;
[2, [1, [1, [2, 1, 1, 1]]], 1].convertRhythm;
[2, [1, [1, [2, 1, 1, 1]]], 2].convertRhythm; // repeat
[2, [1, [1, [2, 1, 1, -1]]], 2].convertRhythm; // negative value is tied over.
// sound example
Pbind(\degree, Pseries(0, 1, inf), \dur, Pseq([2, [1, [1, [2, 1, 1, -1]]], 2].convertRhythm)).play;
::
subsection:: Starting UNIX processes
private::prUnixCmd
method::unixCmd
Execute a UNIX command strong::asynchronously::. This object should be an array of strings where the first string is the path to the executable to be run and all other strings are passed as arguments to the executable. This method starts the process directly without using a shell.
argument:: action
A link::Classes/Function:: that is called when the process has exited. It is passed two arguments: the exit code and pid of the exited process.
argument:: postOutput
A link::Classes/Boolean:: that controls whether or not the output of the process is displayed in the post window.
returns::
An link::Classes/Integer:: - the pid of the newly created process. Use link::Classes/Integer#-pidRunning:: to test if a process is alive.
discussion::
Example:
code::
["ls","/"].unixCmd;
::
method::unixCmdGetStdOut
Similar to link::#-unixCmd:: except that the stdout of the process is returned (strong::synchronously::) rather than sent to the post window. This object should be an array of strings where the first string is the path to the executable to be run and all other strings are passed as arguments to the executable. This method starts the process directly without using a shell.
code::
~listing = ["ls","/"].unixCmdGetStdOut; // Grab
~listing.reverse.as(Array).dupEach.join.postln; // Mangle
::
private:: acosh, airyAi, airyAiPrime, airyAiZero, acosh, airyAi, airyAiPrime, airyAiZero, airyBi, airyBiPrime, airyBiZero, asinh, atanh, bernouliB2n, beta, betaFull, betaFullC, binomialCoefficient, cbrt, chebyshevT, chebyshevTPrime, chebyshevTZeros, chebyshevU, cosPi, cylBesselI, cylBesselIPrime, cylBesselJ, cylBesselJPrime, cylBesselJZero, cylBesselK, cylBesselKPrime, cylHankel1, cylHankel2, cylNeumann, cylNeumannPrime, cylNeumannZero, digamma, doubleFactorial, ellint1, ellint1C, ellint2, ellint2C, ellint3, ellint3C, ellintD, ellintDC, ellintRc, ellintRd, ellintRf, ellintRg, ellintRj, erf, erfC, erfCInv, erfInv, expintEi, expintEn, expm1, factorial, fallingFactorial, gammaP, gammaPDerivative, gammaPInv, gammaPInvA, gammaQ, gammaQDerivative, gammaQInv, gammaQInvA, hermite, heumanLambda, ibeta, ibetaC, ibetaCInv, ibetaCInvA, ibetaCInvB, ibetaDerivative, ibetaInv, ibetaInvA, ibetaInvB, jacobiCd, jacobiCn, jacobiCs, jacobiDc, jacobiDn, jacobiDs, jacobiNc, jacobiNd, jacobiNs, jacobiSc, jacobiSd, jacobiSn, jacobiZeta, laguerre, laguerreAssoc, legendreP, legendrePAssoc, legendrePPrime, legendrePZeros, legendreQ, lgamma, log1p, owensT, polygamma, pow, powm1, prHermite, prLaguerreAssoc, prLegendreQ, risingFactorial, sinPi, sincPi, sinhcPi, sphBessel, sphBesselPrime, sphHankel1, sphHankel2, sphNeumann, sphNeumannPrime, sphericalHarmonic, sphericalHarmonicI, sphericalHarmonicR, sqrt1pm1, tangentT2n, tgamma, tgamma1pm1, tgammaDeltaRatio, tgammaLower, tgammaRatio, tgammaUpper, trigamma, zeta
|