1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
|
CLASS:: SimpleNumber
summary:: one-dimensional value
categories:: Math
related::Classes/Polar, Classes/Complex, Classes/Float, Classes/Integer, Classes/UnaryOpUGen, Classes/BinaryOpUGen, Guides/Tour-of-Special-Functions
DESCRIPTION::
Base class for numbers which can be represented by a single one dimensional value.
Most of the Unary and Binary operations are also implemented by link::Classes/UnaryOpUGen:: and link::Classes/BinaryOpUGen::, so you can get more examples by looking at the help for those.
CLASSMETHODS::
method:: new
allocates a new SimpleNumber.
INSTANCEMETHODS::
private:: prSimpleNumberSeries
subsection:: math support
method:: +
Addition
method:: -
Subtraction
method:: *
Multiplication
method:: /
Division
method:: %
Modulo
method:: mod
Modulo
method:: div
Integer Division
method:: **
Exponentiation
method:: !=
Is not
method:: >
greater than
method:: <
greater than
method:: >=
greater or equal than
method:: <=
smaller or equal than
method:: lcm
Least common multiple
method:: gcd
Greatest common divisor
method:: round
Round to multiple of aNumber
method:: roundUp
Round up to a multiple of aNumber. For roundDown use Link::Classes/SimpleNumber#-trunc#trunc::.
method:: smallButNotZero
Check if the value is closer to zero than a threshold, but not zero.
argument::thresh
The threshold to use for comparison.
method:: trunc
Truncate to multiple of aNumber (e.g. it rounds numbers down to a multiple of aNumber).
method:: softRound
Rounds the value to a multiple of strong::resolution::. By using strong::margin:: and strong::strength:: you can control which values will be rounded, and by how much.
Conceptually this is the equivalent of MIDI quantization in a DAW/MIDI sequencer. In particular it allows a certain sloppiness close to the strong::resolution:: value.
Note: this method expects values >= 0.
argument::resolution
Round this value to a multiple of resolution. E.g. if you chose 1, then all values would be rounded to the nearest integer.
argument::margin
Values that are within ±strong::margin:: from a multiple of strong::resolution:: will be left as they are.
E.g. if you chose a resolution value of 0.5 and a margin of 0.01, then the values 0.501 and 0.499 would be left as they are, but the value 0.502 would become 0.5.
This should be a value between 0 and strong::resolution::.
argument::strength
Determines the degree to which this number will be changed.
If strength is 1, then this function will return the nearest resolution. If it is 0, then value of this number will be left unchanged.
E.g. If the resolution was 1 and strength was 0.5, then the value 0.6 would become 0.8.
discussion::
code::
((0..10) / 5).collect { |num| [num, num.softRound(1, 0, 1)] };
((0..10) / 5).collect { |num| [num, num.softRound(1, 0.3, 1)] };
((0..10) / 5).collect { |num| [num, num.softRound(1, 0, 0.5)] };
::
method:: snap
Rounds the values strong::margin:: distance from resolution to a multiple of resolution. By using strong::margin:: and strong::strength:: you can control when values will be rounded, and by how much.
Conceptually this is the equivalent of 'snap' in a graphics program. Values within a certain distance (strong::margin::) from a grid line are snapped to it. All other values are unchanged.
Note: this method expects values >= 0.
argument::resolution
Snap this value to a multiple of resolution. E.g. if you chose 1, then all values would be rounded to the nearest integer.
argument::margin
Only values that are greater ±strong::margin:: from a multiple of strong::resolution:: value will be changed. Values that are less than strong::margin:: will be unchanged.
E.g. if you chose a resolution value of 0.5 and a margin of 0.01, then the values 0.501 and 0.499 would be snapped to 0.5, but the value 0.502 would be unchanged.
This should be a value between 0 and strong::resolution::.
argument::strength
Determines the degree to which this number will be changed.
If strength is 1, then this function will return the nearest resolution. If it is 0, then value of this number will be left unchanged.
E.g. If the resolution was 1 and strength was 0.5, then the value 0.6 would become 0.8.
discussion::
code::
((0..10) / 5).collect { |num| [num, num.snap(1, 0, 1)] };
((0..10) / 5).collect { |num| [num, num.snap(1, 0.3, 1)] };
((0..10) / 5).collect { |num| [num, num.snap(1, 0, 0.5)] };
::
method:: thresh
method:: min
Minimum
method:: max
Maximum
method:: wrap2
method:: atan2
Arctangent of (this/aNumber)
method:: hypot
Square root of the sum of the squares.
method:: log
returns:: Base e logarithm.
method:: log2
returns:: Base 2 logarithm.
method:: log10
returns:: Base 10 logarithm.
method:: neg
returns:: negation
method:: abs
returns:: absolute value.
method:: sign
returns:: Answer -1 if negative, +1 if positive or 0 if zero.
method:: ceil
returns:: next larger integer.
method:: floor
returns:: next smaller integer
method:: sin
Sine
method:: cos
Cosine
method:: tan
Tangent
method:: asin
Arcsine
method:: acos
Arccosine
method:: atan
Arctangent
method:: sinh
Hyperbolic sine
method:: cosh
Hyperbolic cosine
method:: tanh
Hyperbolic tangent
method:: frac
fractional part
method:: squared
the square of the number
method:: cubed
the cube of the number
method:: sqrt
the square root of the number.
method:: exp
e to the power of the receiver.
method:: reciprocal
1 / this
method:: pow
this to the power of aNumber
method:: fold2
the folded value, a bitwise or with aNumber
method:: previousPowerOf
the number relative to this that is the previous power of aNumber
method:: nextPowerOf
the next power of aNumber
method:: nextPowerOfTwo
returns:: the number relative to this that is the next power of 2
method:: nextPowerOfThree
the next power of three
method:: hash
returns:: a hash value
method:: <!
returns:: the receiver. aNumber is ignored.
method:: &
Bitwise And
method::|
Bitwise Or
method:: bitXor
Bitwise Exclusive Or
method:: bitHammingDistance
Binary Hamming distance: the count of bits that are not the same in the two numbers
method:: bitTest
returns:: true if bit at index aNumber is set.
method:: bitNot
returns:: ones complement
method:: <<
Binary shift left.
method:: >>
Binary shift right.
method:: +>>
Unsigned binary shift right.
method:: rightShift
returns:: performs a binary right shift
method:: unsignedRightShift
returns:: performs an unsigned right shift
method:: leftShift
returns:: performs a binary left shift
method:: bitOr
returns:: performs a bitwise or with aNumber
method:: bitAnd
returns:: performs a bitwise and with aNumber
method:: ring1
(a * b) + a
method:: ring2
((a*b) + a + b)
method:: ring3
(a * a *b)
method:: ring4
((a*a *b) - (a*b*b))
method:: difsqr
(a*a) - (b*b)
method:: sumsqr
(a*a) + (b*b)
method:: sqrdif
(a - b) ** 2
method:: sqrsum
(a + b) ** 2
method:: absdif
(a - b).abs
method:: moddif
On a circle, there are two distances between two points. This operator returns the smaller value of the two.
code::
moddif(0.75, 0, 1)
::
method:: amclip
0 when b <= 0, a*b when b > 0
method:: scaleneg
a * b when a < 0, otherwise a.
method:: clip2
clips receiver to +/- aNumber
method:: excess
Returns the difference of the receiver and its clipped form.
discussion::
code::
(a - clip2(a,b))
::
method:: madd
code::
this * a + b
::
subsection:: testing
method:: isPositive
Answer if the number is >= 0.
method:: isNegative
Answer if the number is < 0.
method:: isStrictlyPositive
Answer if the number is > 0.
method:: booleanValue
returns:: true, if strictly positive ( > 0), otherwise false (see link::Classes/Boolean::)
method:: isNaN
method:: ==
subsection:: conversion
method:: asFraction
argument::denominator
argument::fasterBetter
if true, asFraction may find a much closer approximation and do it faster.
returns:: an array of denominator and divisor of the nearest and smallest fraction
method:: asAudioRateInput
Converts this into an audiorate input.
method:: asTimeString
Produces a time string in the clock format inspired by ISO 8601 time interval display (truncated representation) code::(ddd:)hh:mm:ss(.z)::, interpreting the receiver as time in seconds. See link::Classes/String#-asSecs:: for the inverse function.
argument:: precision
accuracy of the fraction of seconds; since the number of decimal places is also an argument, code::precision:: is clamped to code::10.pow(decimalPlaces.neg)::, i.e. code::0.001:: for code::decimalPlaces = 3::
argument::maxDays
maximum number of days
argument::dropDaysIfPossible
a link::Classes/Boolean::. If set to code::true::, and the number of days in the formatted string
would be 0, that section of the resulting string is omitted
argument::decimalPlaces
number of decimal places representing fraction of seconds, clamped to code::0::; if code::0::, the string is formatted as code::(ddd:)hh:mm:ss::
discussion::
code::
(
var start;
start = Main.elapsedTime;
{
loop {
(Main.elapsedTime - start).asTimeString.postln;
0.05.wait
}
}.fork;
)
::
method:: asPoint
returns:: this as link::Classes/Point::. x = y = this.
method:: asComplex
returns:: this as link::Classes/Point::. x = y = this.
method:: asWarp
argument::spec
a link::Classes/ControlSpec::
returns:: this as link::Classes/CurveWarp:: according to spec.
method:: asFloat
returns:: this as link::Classes/Float::
method:: asRect
returns:: a link::Classes/Rect:: with x = y = w = h = this.
method:: asBoolean
returns:: this as a link::Classes/Boolean::. this > 0
method:: asQuant
returns:: the values as link::Classes/Quant::
method:: asInteger
returns:: this as link::Classes/Integer::
subsection:: timing
method::wait
within a routine, yield the number so that the clock can wait for this many beats. Outside a Routine, this trows an error (see also Routine for details).
discussion::
Create a routine by a function fork
code::
(
fork {
1.wait;
"I did wait".postln;
1.0.rand.wait;
"No you didn't".postln;
2.wait;
(1..).do { |i|
"yes I did".postln;
i.asFloat.rand.wait;
"no you didn't".postln;
i.wait
}
}
)
::
method:: waitUntil
like wait, only specify a time (measured in beats of the current thread's clock). Outside a Routine, this throws an error (see also Routine for details).
method:: sleep
make the current thread sleep, until woken up by re-scheduling. Outside a Routine, this trows an error (see also Routine for details).
method:: nextTimeOnGrid
argument::clock
returns:: the next possible multiple of the clock's beats.
method:: schedBundleArrayOnClock
subsection:: series and arrays
method:: nearestInList
returns:: the value in the list closest to this
discussion::
code::
(
l = [0, 0.5, 0.9, 1];
(0, 0.05..1).collect { |i| i.nearestInList(l) }
)
::
method:: nearestInScale
argument:: scale
an array of SimpleNumbers each treated as a step in the octave.
argument:: stepsPerOctave
12 by default
returns:: the value in the collection closest to this, assuming an octave repeating table of note values.
discussion::
code::
(
l = [0, 1, 5, 9, 11]; // pentatonic scale
(60, 61..76).collect { |i| i.nearestInScale(l, 12) }
)
::
method:: series
Generate an arithmetic series from teletype::this:: over strong::second:: to strong::last::.
If strong::second:: is teletype::nil::, it is one magnitude step towards last (1 or -1).
code::
series(5, 7, 10);
series(5, nil, 10);
(5, 7 .. 10)
::
This is used in the shortcuts:
code::
(0..100);
(1, 3 .. 17)
::
returns::
An link::Classes/Array::.
discussion::
The last value may not be included in the result if the step size does not divide evenly into the range of the series.
method:: seriesIter
Create a link::Classes/Routine:: that iterates over an arithmetic series from teletype::this:: over strong::second:: to strong::last::.
Since this is a lazy operation, strong::last:: can be code::inf::, generating an endless series. If unspecified, strong::last:: is code::inf:: or code::-inf:: depending on the step direction.
code::
r = seriesIter(0, 5, 52);
r.nextN(8);
r.nextN(8); // reaches 'last', then nils
r = seriesIter(0, 5); // last = inf
r.nextN(8); // run repeatedly
::
See also link::#-series:: and link::Guides/ListComprehensions::.
returns::
A link::Classes/Routine::.
subsection:: windowing
method:: rectWindow
returns:: a value for a rectangular window function between 0 and 1.
method:: hanWindow
returns:: a value for a hanning window function between 0 and 1.
method:: welWindow
returns:: a value for a welsh window function between 0 and 1.
method:: triWindow
returns:: a value for a triangle window function between 0 and 1.
subsection:: mapping
method:: distort
A nonlinear distortion function.
Implements:
teletype::
this / (1.0 - abs(this))
::
Visualize:
code::
(
{ var saw = LFSaw.ar(2 * 0.01.reciprocal);
[saw, saw.distort]
}.plot.superpose_(true)
)
::
method:: softclip
Distortion with a perfectly linear region from -0.5 to +0.5.
Implements:
teletype::
if (abs(this) < 0.5) { this } { (abs(this) - 0.25) / this };
::
Visualize:
code::
(
{ var saw = LFSaw.ar(2 * 0.01.reciprocal);
[saw, saw.softclip]
}.plot.superpose_(true)
)
::
method:: scurve
Map receiver in the onto an S-curve bound to [0,1].
Implements:
teletype::
this * this * (3.0 - (2.0 * this))
::
with teletype::this:: clipped to [0,1].
code::
((-100..200) / 100 ).collect(_.scurve).plot
::
method:: ramp
Map the receiver onto a ramp starting at code::0.0::, ending at code::1.0::, effectively clipping the receiver at [0,1].
discussion::
code::
(
var vals = (-100..200) / 100;
vals.collect(_.ramp).plot
.domainSpecs_(
[vals.minItem, vals.maxItem].asSpec
)
.axisLabelX_("input").axisLabelY_("output")
)
::
method::magnitude
returns:: The absolute value.
Alternatively conceived of as the link::Classes/Polar#-magnitude:: or link::Classes/Complex#-magnitude::, wherein the receiver is the real part and the imaginary part is code::0.0::.
method::angle
returns:: Angle of receiver (in radians) conceived as link::Classes/Polar:: or link::Classes/Complex:: number, wherein the receiver is the real part and the imaginary part is code::0.0::. I.e. teletype::if (this.isPositive) { 0.0 } { pi }::.
method:: degreeToKey
argument:: scale
an array of SimpleNumbers each treated as a step in the octave.
argument:: stepsPerOctave
12 is the standard chromatic scale.
discussion::
the value is truncated to an integer and used as an index into an octave repeating table of note values. Indices wrap around the table and shift octaves as they do.
code::
(
l = [0, 1, 5, 9, 11]; // pentatonic scale
(1, 2..15).collect{|i|
i.degreeToKey(l, 12)
};
)
::
method:: keyToDegree
inverse of degreeToKey.
argument:: scale
an array of SimpleNumbers each treated as a step in the octave.
argument:: stepsPerOctave
12 is the standard chromatic scale.
discussion::
code::
(
l = [0, 1, 5, 9, 11]; // pentatonic scale
(60, 61..75).collect { |i| i.keyToDegree(l, 12) }
)
::
code::
(
l = [0, 1, 5, 9, 11]; // pentatonic scale
(60, 61..75).postln.collect { |i| i.keyToDegree(l, 12).degreeToKey(l) }
)
::
method::gaussCurve
Map the receiver onto a gauss function.
Uses the formula:
teletype::
a * -exp((this - b).squared / (2 * c.squared))
::
where code::a:: is the distribution amplitude, code::b:: is the mean (typically denoted emphasis::mu::), and the variance is code::c.squared:: (emphasis::sigma::^2).
The method defaults to a "standard normal distribution": a zero mean and both the peak amplitude and variance are code::1.0:: (code::a = 1.0, b = 0.0, c = 1.0::).
code::
(0..1000).normalize(-10, 10).collect { |num| num.gaussCurve }.plot;
::
method:: equalWithPrecision
argument::that
the number to compare with within precision
argument::precision
The absolute precision, independent of the value compared
argument::relativePrecision
The precision relative to the larger absolute of the values compared.
returns:: true if receiver is closer to that than precision.
discussion::
code::
3.1.equalWithPrecision(3.0, 0.05); // false
3.1.equalWithPrecision(3.0, 0.1); // false
3.1.equalWithPrecision(3.0, 0.11); // true
3000.1.equalWithPrecision(3000.0, 0, 0.01); // true
3.1.equalWithPrecision(3.0, 0, 0.01); // false
::
method:: quantize
Deprecated. Round the receiver to the quantum. If you're looking for MIDI quantization type features use CODE::SimpleNumber#-softRound::
argument::quantum
amount.
argument::tolerance
allowed tolerance.
argument::strength
Determines how much the value is allowed to differ in the tolerance range.
discussion::
code::
((0..10) / 10).collect { |num| num.quantize(1, 0.3, 0.5) }.postcs.plot;
((0..10) / 10).collect { |num| num.quantize(1, 0.6, 0.5) }.postcs.plot;
((0..10) / 10).collect { |num| num.quantize(1, 1.0, 0.5) }.postcs.plot;
::
method:: linlin
map the receiver from an assumed linear input range to a linear output range. If the input exceeds the assumed input range, the behaviour is specified by the clip argument.
argument::inMin
assumed input minimum
argument::inMax
assumed input maximum
argument::outMin
output minimum
argument::outMax
output maximum
argument::clip
nil (don't clip)
\max (clip ceiling)
\min (clip floor)
\minmax (clip both - this is default).
discussion::
code::
(0..10).collect { |num| num.linlin(0, 10, -4.3, 100) };
(0..10).linlin(0, 10, -4.3, 100); // equivalent.
::
method::linexp
map the receiver from an assumed linear input range (inMin..inMax) to an exponential output range (outMin..outMax). The output range must not include zero. If the input exceeds the input range, the following behaviours are specified by the clip argument.
argument::inMin
assumed input minimum
argument::inMax
assumed input maximum
argument::outMin
output minimum
argument::outMax
output maximum
argument::clip
nil (don't clip)
\max (clip ceiling)
\min (clip floor)
\minmax (clip both - this is default).
discussion::
code::
(0..10).collect { |num| num.linexp(0, 10, 4.3, 100) };
(0..10).linexp(0, 10, 4.3, 100); // equivalent.
::
method::explin
map the receiver from an assumed exponential input range (inMin..inMax) to a linear output range (outMin..outMax). If the input exceeds the assumed input range. The input range must not include zero.
If the input exceeds the input range, the following behaviours are specified by the clip argument.
argument::inMin
assumed input minimum
argument::inMax
assumed input maximum
argument::outMin
output minimum
argument::outMax
output maximum
argument::clip
nil (don't clip)
\max (clip ceiling)
\min (clip floor)
\minmax (clip both - this is default).
discussion::
code::
(1..10).collect { |num| num.explin(0.1, 10, -4.3, 100) };
(1..10).explin(0.1, 10, -4.3, 100); // equivalent.
::
method::expexp
map the receiver from an assumed exponential input range (inMin..inMax) to an exponential output range (outMin..outMax). If the input exceeds the assumed input range. Both input range and output range must not include zero.
If the input exceeds the input range, the following behaviours are specified by the clip argument.
argument::inMin
assumed input minimum
argument::inMax
assumed input maximum
argument::outMin
output minimum
argument::outMax
output maximum
argument::clip
nil (don't clip)
\max (clip ceiling)
\min (clip floor)
\minmax (clip both - this is default).
discussion::
code::
(1..10).collect { |num| num.expexp(0.1, 10, 4.3, 100) };
(1..10).expexp(0.1, 10, 4.3, 100); // equivalent.
::
method::lincurve
map the receiver from an assumed linear input range (inMin..inMax) to an exponential curve output range (outMin..outMax). A curve is like the curve parameter in Env. Unlike with linexp, the output range may include zero.
If the input exceeds the input range, the following behaviours are specified by the clip argument.
argument::inMin
assumed input minimum
argument::inMax
assumed input maximum
argument::outMin
output minimum
argument::outMax
output maximum
argument::curve
0 (linear) <0 (concave, negatively curved) >0 (convex, positively curved)
argument::clip
nil (don't clip)
\max (clip ceiling)
\min (clip floor)
\minmax (clip both - this is default).
discussion::
code::
(0..10).collect { |num| num.lincurve(0, 10, -4.3, 100, -3) };
(0..10).lincurve(0, 10, -4.3, 100, -3); // equivalent.
::
code::
// different curves:
(-4..4).do { |val|
(0..100).collect(_.lincurve(0, 100, 0, 1, val)).plot
}
::
method::curvelin
map the receiver from an assumed curve-exponential input range (inMin..inMax) to a linear output range (outMin..outMax). If the input exceeds the assumed input range. A curve is like the curve parameter in Env. Unlike with explin, the input range may include zero. If the input exceeds the input range, the following behaviours are specified by the clip argument.
argument::inMin
assumed input minimum
argument::inMax
assumed input maximum
argument::outMin
output minimum
argument::outMax
output maximum
argument::curve
0 (linear) <0 (concave, negatively curved) >0 (convex, positively curved)
argument::clip
nil (don't clip)
\max (clip ceiling)
\min (clip floor)
\minmax (clip both - this is default).
discussion::
code::
(1..10).collect { |num| num.curvelin(0, 10, -4.3, 100, -3) };
(1..10).curvelin(0, 10, -4.3, 100, -3); // equivalent.
::
code::
// different curves:
(-4..4).do { |val|
(0..100).collect(_.curvelin(0, 100, 0, 1, val)).plot
}
::
method::bilin
map the receiver from two assumed linear input ranges (inMin..inCenter) and (inCenter..inMax) to two linear output ranges (outMin..outCenter) and (outCenter..outMax). If the input exceeds the input range, the following behaviours are specified by the clip argument.
argument::inCenter
argument::inMin
assumed input minimum
argument::inMax
assumed input maximum
argument::outCenter
argument::outMin
output minimum
argument::outMax
output maximum
argument::clip
nil (don't clip)
\max (clip ceiling)
\min (clip floor)
\minmax (clip both - this is default).
discussion::
code::
var center = 0.5, ctlCenter;
w = Window("bilin", Rect(100, 100, 200, 100)).front;
a = Slider(w, Rect(20, 20, 150, 20)).value_(0.5);
b = Slider(w, Rect(20, 45, 150, 20)).value_(0.5);
b.action = { center = b.value };
a.mouseDownAction = { ctlCenter = a.value };
a.action = {
b.value = a.value.bilin(ctlCenter, 0, 1, center, 0, 1);
};
::
method::biexp
map the receiver from two assumed exponential input ranges (inMin..inCenter) and (inCenter..inMax) to two linear output ranges (outMin..outCenter) and (outCenter..outMax). The input range must not include zero. If the input exceeds the input range, the following behaviours are specified by the clip argument.
argument::inCenter
argument::inMin
assumed input minimum
argument::inMax
assumed input maximum
argument::outCenter
argument::outMin
output minimum
argument::outMax
output maximum
argument::clip
nil (don't clip)
\max (clip ceiling)
\min (clip floor)
\minmax (clip both - this is default).
discussion::
code::
// doesn't properly work yet.
(
var center = 0.5, ctlCenter;
w = Window("biexp", Rect(100, 100, 200, 100)).front;
a = Slider(w, Rect(20, 20, 150, 20)).value_(0.5);
b = Slider(w, Rect(20, 45, 150, 20)).value_(0.5);
b.action = { center = b.value };
a.mouseDownAction = { ctlCenter = a.value + 0.05 };
a.action = {
b.value = (a.value + 0.1).biexp(ctlCenter, 0.1, 1.1, center, 0, 1);
};
)
::
method::lcurve
map the receiver onto an L-curve.
discussion::
Uses the formula
code::
a * (m * exp(x) * rTau + 1) / (n * exp(x) * rTau + 1)
::
This is used for smoothing values and limiting them to a range.
code::
(0..1000).normalize(-10, 10).collect { |num| num.lcurve }.plot;
::
method:: degrad
returns:: converts degree to radian
method:: raddeg
returns:: converts radian to degree
method:: midicps
Convert MIDI note to cycles per second
returns:: cycles per second
method:: cpsmidi
Convert cycles per second to MIDI note.
returns:: midi note
method:: midiratio
Convert an interval in semitones to a ratio.
returns:: a ratio
method:: ratiomidi
Convert a ratio to an interval in semitones.
returns:: an interval in semitones
method:: ampdb
Convert a linear amplitude to decibels.
method:: dbamp
Convert a decibels to a linear amplitude.
method:: octcps
Convert decimal octaves to cycles per second.
method:: cpsoct
Convert cycles per second to decimal octaves.
subsection:: streams
method:: storeOn
stores this on the given stream
method:: printOn
prints this on the given stream
subsection:: random
method:: coin
Let emphasis::x:: be the receiver clipped to the range [0, 1]. With probability emphasis::x::, return true. With probability 1 - emphasis::x::, return false.
method:: rand
returns:: Random number from zero up to the receiver, exclusive.
method:: rand2
returns:: a random number from -this to +this.
method:: rrand
argument::aNumber
the upper limit
argument::adverb
returns:: a random number in the interval ]a, b[.
discussion::
If both a and b are link::Classes/Integer:: then the result will be an link::Classes/Integer::.
method:: linrand
returns:: a linearly distributed random number from zero to this.
method:: bilinrand
returns:: Bilateral linearly distributed random number from -this to +this.
method:: sum3rand
This was suggested by Larry Polansky as a loose approximation of gaussian.
returns:: A random number from -this to +this that is the result of summing three uniform random generators to yield a bell-like distribution.
method:: exprand
an exponentially distributed random number in the interval ]a, b[. This is always a link::Classes/Float::.
(Note that the distribution of numbers is not exactly an EMPHASIS::exponential distribution::, since that would be unbounded: we might call it a EMPHASIS::logarithmic uniform distribution::.)
argument::aNumber
the upper limit
argument::adverb
method:: gauss
a gaussian distributed random number.
argument::standardDeviation
the upper limit
discussion::
Always returns a link::Classes/Float::.
code::
(0..1000).collect { |num| gauss(0.0, num) }.plot;
::
method:: partition
randomly partition a number into parts of at least min size.
argument:: parts
number of parts
argument:: min
the minimum size
discussion::
code::
75.partition(8, 3);
75.partition(75, 1);
::
subsection:: UGen Compatibility Methods
Some methods to ease the development of generic ugen code.
method:: lag, lag2, lag3, lagud, lag2ud, lag3ud, slew, varlag
returns:: code::this::
subsection:: misc
method:: isValidUGenInput
returns:: false if receiver cannot be used in UGen.
subsection::Special Functions
A variety of Special Functions are supplied by the Boost C++ library. The library's
link::http://www.boost.org/doc/libs/1_66_0/libs/math/doc/html/special.html##online documentation::
serves as the primary reference for the following functions. The methods
here match closely with those found in the source library, as do argument names.
Below you'll find descriptions of the functions and their bounds, but for
visualizing the functions, have a look in link::Guides/Tour-of-Special-Functions::.
warning::Many of the functions are only valid in certain numerical ranges. For the most part, error handling
happens in the underlying boost functions. While these errors are often obtuse, you'll usually find
a useful message at the end of the error regarding proper ranges and the erroneous value supplied.
Refer to the online documentation for more detailed descriptions, and the
link::Guides/Tour-of-Special-Functions:: for plots showing ranges and asymptotes.::
subsection:: Number Series
Take a tour of link::Guides/Tour-of-Special-Functions#Number Series#Number Series::.
method:: bernouliB2n
Returns the (2*code::n::)th Bernoulli number.
Because all odd numbered Bernoulli numbers are zero
(apart from B(1) which is -1/2) the interface will only
return the even numbered Bernoulli numbers.
method:: tangentT2n
Returns a single tangent number at code::i::. Also called a zag function.
subsection:: Gamma Functions
Take a tour of link::Guides/Tour-of-Special-Functions#Gamma Functions#Gamma Functions::.
method:: tgamma
Returns the "true gamma" of value code::z::.
method:: tgamma1pm1
Returns code::gamma(dz + 1) - 1::.
method:: lgamma
Returns the natural logarithm of the gamma function.
method:: digamma
Returns the digamma or psi function of code::z::.
Digamma is defined as the logarithmic derivative of the gamma function.
method:: trigamma
Returns the trigamma function of code::z::.
Trigamma is defined as the derivative of the digamma function.
method:: polygamma
Returns the polygamma function of code::z::.
Polygamma is defined as the code::n::'th derivative of the digamma function.
method:: tgammaRatio
Returns the ratio of gamma functions code::tgamma(a) / tgamma(b)::.
method:: tgammaDeltaRatio
Returns the ratio of gamma functions code::tgamma(a) / tgamma(a+delta)::.
method:: gammaP
Returns the normalised lower incomplete gamma function.
Requires code::a:: > 0 and code::z:: >= 0.
method:: gammaQ
Returns the normalised upper incomplete gamma function.
Requires code::a:: > 0 and code::z:: >= 0.
method:: tgammaLower
Returns the full (non-normalised) lower incomplete gamma function.
Requires code::a:: > 0 and code::z:: >= 0.
method:: tgammaUpper
Returns the full (non-normalised) upper incomplete gamma function.
Requires code::a:: > 0 and code::z:: >= 0.
method:: gammaPInv
Returns a value such that code::p = gamma_p(a, x)::.
Requires code::a:: > 0 and 1 >= code::p,q:: >= 0.
method:: gammaQInv
Returns a value x such that code::q = gamma_q(a, x)::.
Requires code::a:: > 0 and 1 >= code::p,q:: >= 0.
method:: gammaPInvA
Returns a value such that code::p = gamma_p(a, x)::.
Requires code::x:: > 0 and 1 >= code::p,q:: >= 0.
method:: gammaQInvA
Returns a value x such that code::q = gamma_q(a, x)::.
Requires code::x:: > 0 and 1 >= code::p,q:: >= 0.
method:: gammaPDerivative
Implements the partial derivative with respect to x of the incomplete gamma function (lower).
method:: gammaQDerivative
Implements the partial derivative with respect to x of the incomplete gamma function (upper).
subsection:: Factorials and Binomial Coefficients
Take a tour of link::Guides/Tour-of-Special-Functions#Factorials and Binomial Coefficients#Factorials and Binomial Coefficients::.
method:: factorial
Returns code::i!::.
warning::code::factorial:: will overflow if code::i > 170::::
method:: doubleFactorial
Returns code::i!!::.
For strong::even:: code::i::, code::i !! = i(i-2)(i-4)(i-6) ... (4)(2)::.
For strong::odd:: code::i::, code::i !! = i(i-2)(i-4)(i-6) ... (3)(1)::.
method:: risingFactorial
Returns the rising factorial of code::x:: and code::i:::
code::x(x+1)(x+2)(x+3)...(x+i-1)::
Both code::x:: and code::i:: can be negative as well as positive.
method:: fallingFactorial
Returns the falling factorial of code::x:: and code::i:::
code::x(x-1)(x-2)(x-3)...(x-i+1)::
This function is only defined for positive code::i::. Argument code::x:: can be either positive or negative.
method:: binomialCoefficient
Requires code::k:: <= code::n::.
subsection:: Beta Functions
Take a tour of link::Guides/Tour-of-Special-Functions#Beta Functions#Beta Functions::.
method:: beta
The beta function is defined by: code::tgamma(a)*tgamma(b) / tgamma(a+b)::.
method:: ibeta
Returns the normalised incomplete beta function of code::a::, code::b:: and code::x::.
Require 0 <= code::x:: <= 1, code::a,b:: >= 0, and in addition that not both code::a:: and code::b:: are zero.
method:: ibetaC
Returns the normalised complement of the incomplete beta function of code::a::, code::b:: and code::x::.
Require 0 <= code::x:: <= 1, code::a,b:: >= 0, and in addition that not both code::a:: and code::b:: are zero.
method:: betaFull
Returns the full (non-normalised) incomplete beta function of code::a::, code::b:: and code::x::.
Require 0 <= code::x:: <= 1, and code::a,b:: > 0.
method:: betaFullC
Returns the full (non-normalised) complement of the incomplete beta function of code::a::, code::b:: and code::x::.
Require 0 <= code::x:: <= 1, and code::a,b:: > 0.
method:: ibetaInv
Returns a value code::x:: such that: code::p = ibeta(a, b, x)::.
Requires code::a,b:: > 0 and 0 <= code::p:: <= 1.
method:: ibetaCInv
Returns a value code::x:: such that: code::q = ibetaC(a, b, x)::.
Requires code::a,b:: > 0 and 0 <= code::q:: <= 1.
method:: ibetaInvA
Returns a value code::a:: such that: code::p = ibeta(a, b, x)::.
Requires code::b:: > 0, 0 < code::x:: < 1, and 0 <= code::p:: <= 1.
method:: ibetaCInvA
Returns a value code::a:: such that: code::q = ibetaC(a, b, x)::.
Requires code::b:: > 0, 0 < code::x:: < 1, and 0 <= code::q:: <= 1.
method:: ibetaInvB
Returns a value code::b:: such that: code::p = ibeta(a, b, x)::.
Requires code::a:: > 0, 0 < code::x:: < 1, and 0 <= code::p:: <= 1.
method:: ibetaCInvB
Returns a value code::b:: such that: code::q = ibetaC(a, b, x)::.
Requires code::a:: > 0, 0 < code::x:: < 1, and 0 <= code::q:: <= 1.
method:: ibetaDerivative
Returns the partial derivative with respect to code::x:: of the incomplete
beta function code::ibeta(a,b,x)::.
subsection:: Error Functions
Take a tour of link::Guides/Tour-of-Special-Functions#Error Functions#Error Functions::.
method:: erf
Returns the error function of code::z::.
method:: erfC
Returns the complement of the error function of code::z::.
method:: erfInv
Returns the inverse error function of code::z::, that is a value code::x:: such that:
code::p = erf(x)::.
method:: erfCInv
Returns the inverse of the complement of the error function of code::z::,
that is a value code::x:: such that:
code::p = erfC(x)::
subsection:: Polynomials
Take a tour of link::Guides/Tour-of-Special-Functions#Polynomials#Polynomials::.
method:: legendreP
Returns the Legendre Polynomial of the first kind.
Requires -1 <= code::x:: <= 1.
method:: legendrePPrime
Returns the derivatives of the Legendre polynomials.
method:: legendrePZeros
Since the Legendre polynomials are alternatively even and odd, only the
non-negative zeros are returned. For the odd Legendre polynomials, the
first zero is always zero. The rest of the zeros are returned in increasing order.
method:: legendrePAssoc
Returns the associated Legendre polynomial of the first kind.
Requires -1 <= code::x:: <= 1.
method:: legendreQ
Returns the value of the Legendre polynomial that is the
second solution to the Legendre differential equation.
Requires -1 <= code::x:: <= 1.
method:: laguerre
Returns the value of the Laguerre Polynomial of order code::n:: at point code::x::.
method:: laguerreAssoc
Returns the Associated Laguerre polynomial of degree of dgree code::n:: and order code::m:: at point code::x::.
method:: hermite
Returns the value of the Hermite Polynomial of order code::n:: at point code::x::.
method:: chebyshevT
Returns the Chebyshev polynomials of the first kind.
method:: chebyshevU
Returns the Chebyshev polynomials of the second kind.
method:: chebyshevTPrime
Returns the derivatives of the Chebyshev polynomials of the first kind.
method:: chebyshevTZeros
Returns the roots (zeros) of the code::n::-th Chebyshev polynomial of the first kind.
method:: sphericalHarmonic
Returns the (code::Complex::) value of the Spherical Harmonic.
code::theta:: is taken as the polar (colatitudinal) coordinate within code::[0, pi]::,
and code::phi:: as the azimuthal (longitudinal) coordinate within code::[0,2pi]::.
See boost documentation for further information, including a note about the
Condon-Shortley phase term of code::(-1)^m::.
method:: sphericalHarmonicR
Returns the real part of the Spherical Harmonic.
method:: sphericalHarmonicI
Returns the imaginary part of the Spherical Harmonic.
subsection:: Bessel Functions
Take a tour of link::Guides/Tour-of-Special-Functions#Bessel Functions#Bessel Functions::.
method:: cylBesselJ
Returns the result of the Bessel functions of the first kind.
The functions return the result of code::domain_error:: whenever the result is
undefined or complex. This occurs when code::x < 0:: and code::v:: is
not an integer, or when code::x == 0:: and code::v != 0::.
method:: cylNeumann
Returns the result of the Bessel functions of the second kind.
The functions return the result of code::domain_error:: whenever the result is
undefined or complex. This occurs when code::x <= 0::.
method:: cylBesselJZero
Returns a single zero or root of the Bessel function of the first kind.
code::index:: is a 1-based index of zero of the cylindrical Bessel function of order code::v::.
method:: cylNeumannZero
Returns a single zero or root of the Neumann function (Bessel function of the second kind).
code::index:: is a 1-based index of zero of the cylindrical Neumann function of order code::v::.
method:: cylBesselI
Returns the result of the modified Bessel functions of the first kind.
method:: cylBesselK
Returns the result of the modified Bessel functions of the second kind.
Requires code::x > 0::.
method:: sphBessel
Returns the result of the spherical Bessel functions of the first kind.
Requires code::x:: > 0.
method:: sphNeumann
Returns the result of the spherical Bessel functions of the first kind.
Requires code::x:: > 0.
method:: cylBesselJPrime
Returns the first derivative with respect to x of the corresponding Bessel function.
method:: cylNeumannPrime
Returns the first derivative with respect to x of the corresponding Neumann function.
Requires code:: x > 0::.
method:: cylBesselIPrime
Returns the first derivative with respect to x of the corresponding Bessel function.
method:: cylBesselKPrime
Returns the first derivative with respect to x of the corresponding Bessel function.
Requires code:: x > 0::.
method:: sphBesselPrime
Returns the first derivative with respect to x of the corresponding Bessel function.
Requires code:: x > 0::.
method:: sphNeumannPrime
Returns the first derivative with respect to x of the corresponding Neumann function.
Requires code:: x > 0::.
subsection:: Hankel Functions
Take a tour of link::Guides/Tour-of-Special-Functions#Hankel Functions#Hankel Functions::.
method:: cylHankel1
Returns the result of the Hankel functions of the first kind.
method:: cylHankel2
Returns the result of the Hankel functions of the second kind.
method:: sphHankel1
Returns the result of the spherical Hankel functions of the first kind.
method:: sphHankel2
Returns the result of the spherical Hankel functions of the second kind.
subsection:: Airy Functions
Take a tour of link::Guides/Tour-of-Special-Functions#Airy Functions#Airy Functions::.
method:: airyAi
Returns the result of the Airy function Ai at code::x::.
method:: airyBi
Returns the result of the Airy function Bi at code::x::.
method:: airyAiPrime
Returns the derivative of the Airy function Ai at code::x::.
method:: airyBiPrime
Returns the derivative of the Airy function Bi at code::x::.
method:: airyAiZero
Returns the code::m::th zero or root of the Airy Ai function. The Airy Ai
function has an infinite number of zeros on the negative real axis.
code::m:: is 1-based.
method:: airyBiZero
Returns the code::m::th zero or root (1-based) of the Airy Bi function. The Airy Bi
function has an infinite number of zeros on the negative real axis.
code::m:: is 1-based.
subsection:: Elliptic Integrals
Take a tour of link::Guides/Tour-of-Special-Functions#Elliptic Integrals#Elliptic Integrals::.
method:: ellintRf
Returns Carlson's Elliptic Integral RF.
Requires that code::x,y >= 0::, with at most one of them zero, and that code::z >= 0::.
method:: ellintRd
Returns Carlson's Elliptic Integral RD.
Requires that code::x,y >= 0::, with at most one of them zero, and that code::z >= 0::.
method:: ellintRj
Returns Carlson's Elliptic Integral RJ.
Requires that code::x,y,z >= 0::, with at most one of them zero, and that code::p != 0::.
method:: ellintRc
Returns Carlson's Elliptic Integral RC.
Requires that code::x >= 0::, with at most one of them zero, and that code::y != 0::.
method:: ellintRg
Returns Carlson's Elliptic Integral RG.
Requires that code::x,y >= 0::.
method:: ellint1
Returns the incomplete elliptic integral of the first kind, Legendre form.
Requires code::-1 <= k <= 1::.
method:: ellint1C
Returns the complete elliptic integral of the first kind, Legendre form.
Requires code::-1 <= k <= 1::.
method:: ellint2
Returns the incomplete elliptic integral of the second kind, Legendre form.
Requires code::-1 <= k <= 1::.
method:: ellint2C
Returns the complete elliptic integral of the second kind, Legendre form.
Requires code::-1 <= k <= 1::.
method:: ellint3
Returns the incomplete elliptic integral of the third kind, Legendre form.
Requires code::-1 <= k <= 1:: and code::n < 1/sin^2(phi)::.
method:: ellint3C
Returns the complete elliptic integral of the third kind, Legendre form.
Requires code::-1 <= k <= 1:: and code::n < 1::.
method:: ellintD
Returns the incomplete elliptic integral strong::D(phi, k)::, Legendre form.
Requires code::-1 <= k <= 1::.
method:: ellintDC
Returns the complete elliptic integral strong::D(phi, k)::, Legendre form.
Requires code::-1 <= k <= 1::.
method:: jacobiZeta
Returns the result of the Jacobi Zeta Function.
Requires code::-1 <= k <= 1::.
method:: heumanLambda
Returns the result of the Heuman Lambda Function.
Requires code::-1 <= k <= 1::.
subsection:: Jacobi Elliptic Functions
Like all elliptic functions, these can be parameterised in a number of ways:
LIST::
##In terms of a parameter code::m::.
##In terms of the elliptic modulus code::k:: where code::m = k^2::.
##In terms of the modular angle code::α::, where code::m = sin2α::.
::
This implementation takes the elliptic modulus code::k:: as the parameter.
In addition the variable code::u:: is used to express an amplitude strong::φ::.
All take the elliptic modulus as the first argument - this is for alignment with the link::#Elliptic Integrals::.
Take a tour of link::Guides/Tour-of-Special-Functions#Jacobi Elliptic Functions#Jacobi Elliptic Functions::.
method:: jacobiCd
method:: jacobiCn
method:: jacobiCs
method:: jacobiDc
method:: jacobiDn
method:: jacobiDs
method:: jacobiNc
method:: jacobiNd
method:: jacobiNs
method:: jacobiSc
method:: jacobiSd
method:: jacobiSn
subsection:: Zeta Functions
Take a tour of link::Guides/Tour-of-Special-Functions#Zeta Functions#Zeta Functions::.
method:: zeta
Returns the zeta function of code::z::.
Requires code::z != 1::.
subsection:: Exponential Integrals
Take a tour of link::Guides/Tour-of-Special-Functions#Exponential Integrals#Exponential Integrals::.
method:: expintEn
Returns the exponential integral En of code::z::.
Requires that when code::n == 1::, code::z !=0::.
method:: expintEi
Returns the exponential integral of code::z::.
Requires code::z != 0::.
subsection:: Basic Functions
Take a tour of link::Guides/Tour-of-Special-Functions#Basic Functions#Basic Functions::.
method:: sinPi
Returns code::sin(x * π)::.
method:: cosPi
Returns code::cos(x * π)::.
method:: log1p
Returns the natural logarithm of code::x+1::.
method:: expm1
Returns code::e^x - 1::.
method:: cbrt
Returns the cube root of code::x::.
method:: sqrt1pm1
Returns code::sqrt(1+x) - 1::.
method:: powm1
Returns code::x^y - 1::.
subsection:: Sinus Cardinal (Sinc) and Hyperbolic Sinus Cardinal Functions
Take a tour of link::Guides/Tour-of-Special-Functions#Sinus Cardinal (Sinc) and Hyperbolic Sinus Cardinal Functions, Inverse Hyperbolic Functions#Sinus Cardinal (Sinc) and Hyperbolic Sinus Cardinal Functions::.
method:: sincPi
Returns the Sinus Cardinal of code::x::. Also known as the "sinc" function.
code::sincPi(x) = sin(x) / x::
method:: sinhcPi
Returns the Hyperbolic Sinus Cardinal of code::x::.
code::sinhcPi(x) = sinh(x) / x::
subsection:: Inverse Hyperbolic Functions
Take a tour of link::Guides/Tour-of-Special-Functions#Sinus Cardinal (Sinc) and Hyperbolic Sinus Cardinal Functions, Inverse Hyperbolic Functions#Inverse Hyperbolic Functions::.
method:: asinh
Returns the reciprocal of the hyperbolic sine function at code::x::.
method:: acosh
Returns the reciprocal of the hyperbolic cosine function at code::x::.
Requires code::x >= 1::.
method:: atanh
Returns the reciprocal of the hyperbolic sine function at code::x::.
Requires code::-1 < x < 1::.
subsection:: Owen's T Function
Take a tour of link::Guides/Tour-of-Special-Functions#Owen#Owen's T Function::.
method:: owensT
Returns the Owens T function of code::h:: and code::a::.
private:: acosh, airyAi, airyAiPrime, airyAiZero, acosh, airyAi, airyAiPrime, airyAiZero, airyBi, airyBiPrime, airyBiZero, asinh, atanh, bernouliB2n, beta, betaFull, betaFullC, binomialCoefficient, cbrt, chebyshevT, chebyshevTPrime, chebyshevTZeros, chebyshevU, cosPi, cylBesselI, cylBesselIPrime, cylBesselJ, cylBesselJPrime, cylBesselJZero, cylBesselK, cylBesselKPrime, cylHankel1, cylHankel2, cylNeumann, cylNeumannPrime, cylNeumannZero, digamma, doubleFactorial, ellint1, ellint1C, ellint2, ellint2C, ellint3, ellint3C, ellintD, ellintDC, ellintRc, ellintRd, ellintRf, ellintRg, ellintRj, erf, erfC, erfCInv, erfInv, expintEi, expintEn, expm1, factorial, fallingFactorial, gammaP, gammaPDerivative, gammaPInv, gammaPInvA, gammaQ, gammaQDerivative, gammaQInv, gammaQInvA, hermite, heumanLambda, ibeta, ibetaC, ibetaCInv, ibetaCInvA, ibetaCInvB, ibetaDerivative, ibetaInv, ibetaInvA, ibetaInvB, jacobiCd, jacobiCn, jacobiCs, jacobiDc, jacobiDn, jacobiDs, jacobiNc, jacobiNd, jacobiNs, jacobiSc, jacobiSd, jacobiSn, jacobiZeta, laguerre, laguerreAssoc, legendreP, legendrePAssoc, legendrePPrime, legendrePZeros, legendreQ, lgamma, log1p, owensT, polygamma, pow, powm1, prHermite, prLaguerreAssoc, prLegendreQ, risingFactorial, sinPi, sincPi, sinhcPi, sphBessel, sphBesselPrime, sphHankel1, sphHankel2, sphNeumann, sphNeumannPrime, sphericalHarmonic, sphericalHarmonicI, sphericalHarmonicR, sqrt1pm1, tangentT2n, tgamma, tgamma1pm1, tgammaDeltaRatio, tgammaLower, tgammaRatio, tgammaUpper, trigamma, zeta
|