File: Operators.schelp

package info (click to toggle)
supercollider 1%3A3.13.0%2Brepack-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 80,292 kB
  • sloc: cpp: 476,363; lisp: 84,680; ansic: 77,685; sh: 25,509; python: 7,909; makefile: 3,440; perl: 1,964; javascript: 974; xml: 826; java: 677; yacc: 314; lex: 175; objc: 152; ruby: 136
file content (849 lines) | stat: -rw-r--r-- 17,474 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
title:: Operators
categories:: Language, Common methods
summary:: common unary and binary operators
related:: Reference/Adverbs

SuperCollider supports operator overloading. Operators can thus be applied to a variety of different objects; Numbers, Ugens, Collections, and so on. When operators are applied to ugens they result in link::Classes/BinaryOpUGen::s or link::Classes/UnaryOpUGen::s, through the methods of link::Classes/AbstractFunction::.

This is a list of some of the common unary and binary operators that are implemented by several classes.
See the specific classes for details and other operators.

You can see which classes implements a specific operator by clicking on the method name.

section:: Unary Operators
Unary operators may be written in two ways:
code::
a.operator
operator(a)
::


subsection:: Arithmetics

method:: neg
Inversion.
discussion::
code::
{
	var a;
	a = FSinOsc.ar(300);
	[ a, a.neg ]
}.plot
::

method:: reciprocal
Reciprocal (1/x).

method:: abs
Absolute value.

method:: floor
Next lower integer.
discussion::
code::
{
	var a;
	a = Line.ar(-1, 1, 0.01);
	[ a, a.floor ]
}.plot
::

method:: ceil
Next higher integer.
discussion::
code::
{
	var a;
	a = Line.ar(-1, 1, 0.01);
	[ a, a.ceil ]
}.plot
::

method:: frac
Fractional part.

method:: sign
Sign function.
returns::
-1 when a < 0, +1 when a > 0, 0 when a is 0

method:: squared
Squared value.
returns::
code:: a*a ::

method:: cubed
Cubed value.
returns::
code:: a*a*a ::

method:: sqrt
Square root.
discussion::
The definition of square root is extended for signals so that sqrt(a) when a<0 returns
-sqrt(-a).

method:: exp
Exponential.


subsection:: Musical acoustics


method:: midicps
Convert MIDI note number to cycles per second.
discussion::
code::
{
	Saw.ar(Line.kr(24,108,10).midicps, 0.2)
}.play
::

method:: cpsmidi
Convert cycles per second to MIDI note.

method:: midiratio
Convert an interval in MIDI notes into a frequency ratio.

method:: ratiomidi
Convert a frequency ratio to an interval in MIDI notes.

method:: dbamp
Convert decibels to linear amplitude.

method:: ampdb
Convert linear amplitude to decibels.

method:: octcps
Convert decimal octaves to cycles per second.

method:: cpsoct
Convert cycles per second to decimal octaves.

subsection:: Random operators

See also link::Guides/Randomness::

method::rand
Returns an evenly distributed random value between this and zero.
code::
10.rand;

{ SinOsc.ar(110).rand }.plot;
::

method::rand2
Returns an evenly distributed random value between [+this ... - this].
code::
10.rand2;

{ SinOsc.ar(110).rand2 }.plot;
::

method::linrand
Returns a linearly distributed random value between this and zero.
code::
10.linrand;

{ SinOsc.ar(110).linrand }.plot;
::


method::bilinrand
Returns a linearly distributed random value between [+this ... - this].
code::
10.bilinrand;

{ SinOsc.ar(110).bilinrand }.plot;
::

method::sum3rand
Returns a value from a gaussian-like random distribution between this and zero.
This was suggested by Larry Polansky as a loose approximation of gaussian. Follows the formula:

code::
{ 1.0.rand }.dup(3).sum - 1.5 * (2/3)
::

code::
10.sum3rand;

{ SinOsc.ar(110).sum3rand }.plot;
::

method::coin
Returns one or zero with the probability given by the argument.
code::
0.4.coin;

{ SinOsc.ar(110).coin }.plot;
::


subsection:: Other


method:: log
Natural logarithm.
discussion::
code::
{
	var a, e;
	e = exp(1);
	a = Line.ar(e, 1/e, 0.01);
	a.log
}.plot
::

method:: log2
Base 2 logarithm.

method:: log10
Base 10 logarithm.

method:: sin
Sine.

method:: cos
Cosine.

method:: tan
Tangent.

method:: asin
Arcsine.

method:: acos
Arccosine.

method:: atan
Arctangent.

method:: sinh
Hyperbolic sine.

method:: cosh
Hyperbolic cosine.

method:: tanh
Hyperbolic tangent.

method:: distort
Nonlinear distortion.
discussion::
The formula used is :
code::
x / (1 + abs(x))
::
Here is an example :
code::
(
{
	var a;
	a = Line.ar(-4, 4, 0.01);
	a.distort
}.plot
)

{ FSinOsc.ar(500, 0.0, XLine.kr(0.1, 10, 10)).distort * 0.25 }.scope;
::

method:: softclip
Nonlinear distortion.
discussion::
Distortion with a perfectly linear region from -0.5 to +0.5
code::
(
{
	var a;
	a = Line.ar(-2, 2, 0.01);
	a.softclip
}.plot
)


{ FSinOsc.ar(500,0.0, XLine.kr(0.1, 10, 10)).softclip * 0.25 }.scope(2);
::

method:: isPositive
Test if signal is >= 0.

method:: isNegative
Test if signal is < 0.

method:: isStrictlyPositive
Test if signal is > 0.

section:: Binary Operators
Three different syntaxes can be used for binary operators consisting of letters:
code::
operator(a, b)

a operator: b

a.operator(b)
::
Operators consisting of symbols are written like this:
code::
a + b
::

subsection:: Arithmetics

method:: +
Addition.

method:: -
Subtraction.

method:: *
Multiplication.

method:: /
Division.

method:: %
Floating point modulo.

method:: **
Exponentiation. Same as pow.

method:: pow
Exponentiation.
NOTE:: When used with UGens which produce a negative signal this function extends the usual definition of exponentiation and returns code::neg(neg(a) ** b)::. This allows exponentiation of negative signal values by noninteger exponents.::

method:: lcm
Least common multiple. This definition extends the usual definition and returns a negative number if strong::any of the operands:: is negative. This makes it consistent with the lattice-theoretical interpretation and its idempotency, commutative, associative, absorption laws.

Following the example of the programming language J (see: link::Guides/J-concepts-in-SC::), lcm is analogous to logical strong::and:: (see also: link::http://www.jsoftware.com/papers/eem/gcd.htm::).


code::
lcm(4, 6);
lcm(1, 1); // and
lcm(1624, 26);
lcm(1624, -26);
lcm(-1624, -26);
lcm(513, gcd(513, 44)) // absorption law -> 513.
::
code::
(
{
	var mx = MouseX.kr(-20, 20);
	var my = MouseY.kr(-20, 20);
	SinOsc.ar(SinOsc.kr(0.3) * 20 lcm: [mx, my] * 30 + 500) * 0.1
}.play;
)
::


method:: gcd
Greatest common divisor. This definition extends the usual definition and returns a negative number if strong::both operands:: are negative. This makes it consistent with the lattice-theoretical interpretation and its idempotency, commutative, associative, absorption laws.

"greater" means "divisible by" in this interpretation, so code::gcd(-1, -1):: returns a negative number. This is necessary to make the whole system consistent (fundamental law of arithmetics, idempotency and absorption laws would fail). See examples below.

Following the example of the programming language J (see: link::Guides/J-concepts-in-SC::), gcd is analogous to logical strong::or::  (see also: link::http://www.jsoftware.com/papers/eem/gcd.htm::).

code::
gcd(4, 6);
gcd(0, 1); // or
gcd(1024, 256);
gcd(1024, -256);
gcd(-1024, -256); // "greater" means "divisible by" in this case, so this returns a negative number.
gcd(-1024, lcm(-1024, 256)) // absorption law -> -1024.
gcd(66, 54) * lcm(66, 54) == (66 * 54); // true
::

code::
(
{
	var mx = MouseX.kr(-200, 200);
	var my = MouseY.kr(-200, 200);
	SinOsc.ar(SinOsc.kr(0.3) * 20 gcd: [mx, my] * 30 + 500) * 0.1
}.play;
)
::

Here is an overview of how negative numbers are treated:

code::

lcm(4, 6) // -> 12. "least multiple" interpreted as smallest in Z
lcm(4, -6) // -> -12 "least multiple" interpreted as smallest in Z
lcm(-4, -6) // -> -12 "least multiple" interpreted as smallest in Z

gcd(4, 6) // -> 2 "greatest divisor" interpreted as highest in Z
gcd(4, -6) // -> 2 "greatest divisor" is interpreted as highest in Z
gcd(-4, -6) // -> -2 "greatest divisor" is interpreted as *inverse* in Z. This is the only necessary asymmetry.
::


subsection:: Comparisons

method:: <
Less than.

method:: <=
Less than or equal.

method:: >
Greater than.
discussion::
With UGens, this can be useful for triggering purposes, among other things:
code::
(
{ // trigger an envelope
	var trig;
	trig = SinOsc.ar(1) > 0;
	EnvGen.kr(Env.perc, trig, doneAction: Done.none)
			* SinOsc.ar(440, 0, 0.1)
}.play
)

// trigger a synth
(
SynthDef("help-EnvGen", { arg out=0;
	Out.ar(out,
		EnvGen.kr(Env.perc,1.0,doneAction: Done.freeSelf)
			* SinOsc.ar(440, 0, 0.1)
	)
}).add;

// This synth has no output. It only checks amplitude of input and looks for a transition from < 0.2
// to > 0.2

{ SendTrig.kr(Amplitude.kr(SoundIn.ar(0)) > 0.2) }.play;

// OSCFunc to trigger synth
OSCFunc({ "triggered".postln; Synth.new("help-EnvGen") },'/tr', s.addr);
)
::

method:: >=
Greater than or equal.

method:: ==
Equal.

method:: !=
Not equal.

method:: |==|
"Lazy equality." See link::Classes/Object#-|==|::.

subsection:: Other

method:: <!
Return first argument.

code::
// this is useful when two ugens need to be called, but only one of their outputs is needed
(
{
	var a, b, c;
	a = Dseq([1, 2, 3, 4], inf).dpoll("a");
	b = Dseq([1955, 1952, 1823, 1452], inf).dpoll("b");
	c = (a <! b).dpoll("------> a <! b = "); // c only
	Duty.kr(0.4, 0, c);
	0.0
}.play
)
::

method:: min
Minimum.
discussion::
code::
{ // distorts and envelopes z
var z;
z = FSinOsc.ar(500);
z min: FSinOsc.ar(0.1);
}.play;
::

method:: max
Maximum.
discussion::
code::
{ // modulates and envelopes z
var z;
z = FSinOsc.ar(500);
z max: FSinOsc.ar(0.1);
}.play;
::

method:: round
Quantization by rounding. Rounds a to the nearest multiple of b.

method:: trunc
Quantization by truncation. Truncate a to a multiple of b.

method:: hypot
Hypotenuse. Returns the square root of the sum of the squares of a and b. Or equivalently, the distance from the origin
to the point (x, y).
discussion::
In this example, hypot is used to calculate a doppler shift pitch and amplitude based on distance.
code::
(
{
	var x, y, distance, velocity, pitchRatio, amplitude;
	// object travels 200 meters in 6 secs (=120kph) passing 10 meters
	// from the listener
	x = 10;
	y = LFSaw.kr(1/6, 0, 100);
	distance = hypot(x, y);
	velocity = Slope.kr(distance);
	pitchRatio = (344 - velocity) / 344;  // speed of sound is 344 meters/sec
	amplitude = 10 / distance.squared;
	FSinOsc.ar(1000 * pitchRatio, 0, amplitude)
}.play)
::
The next example uses the distance to modulate a delay line.
code::
(
{
	var x, y, distance, velocity, pitchRatio, amplitude, motorSound;
	// object travels 200 meters in 6 secs (=120kph) passing 10 meters
	// from the listener
	x = 10;
	y = LFSaw.kr(1/6, 0, 100);
	distance = hypot(x, y);
	amplitude = 40 / distance.squared;
	motorSound = RLPF.ar(FSinOsc.ar(200, 0, LFPulse.ar(31.3, 0, 0.4)), 400, 0.3);
	DelayL.ar(motorSound, 110/344, distance/344, amplitude)
}.play)
::

method:: hypotApx
Hypotenuse approximation. Returns an approximation of the square root of the sum of the squares of x and y.
discussion::
The formula used is :
code::
abs(x) + abs(y) - ((sqrt(2) - 1) * min(abs(x), abs(y)))
::
hypotApx is used to implement Complex method magnitudeApx.
This should not be used for simulating a doppler shift because it is discontinuous. Use hypot.

See also link::#hypot::, link::#atan2::.

method:: atan2
Returns the arctangent of y/x.
discussion::
OK, now we can add a pan to the link::#hypot:: doppler examples by using atan2 to find the azimuth,
or direction angle, of the sound source.
Assume speakers at +/- 45 degrees and clip the direction to between those.
code::
(
{
	var x, y, distance, velocity, pitchRatio, amplitude, azimuth, panValue;
	// object travels 200 meters in 6 secs (=120kph) passing 10 meters
	// from the listener
	x = 10;
	y = LFSaw.kr(1/6, 0, 100);
	distance = hypot(x, y);
	velocity = Slope.kr(distance);
	pitchRatio = (344 - velocity) / 344;  // speed of sound is 344 meters/sec
	amplitude = 10 / distance.squared;
	azimuth = atan2(y, x); // azimuth in radians
	panValue = (azimuth / 0.5pi).clip2(1);
	Pan2.ar(FSinOsc.ar(1000 * pitchRatio), panValue, amplitude)
}.play)

(
{
	var x, y, distance, velocity, pitchRatio, amplitude, motorSound,
			azimuth, panValue;
	// object travels 200 meters in 6 secs (=120kph) passing 10 meters
	// from the listener
	x = 10;
	y = LFSaw.kr(1/6, 0, 100);
	distance = hypot(x, y);
	amplitude = 40 / distance.squared;
	motorSound = RLPF.ar(FSinOsc.ar(200, 0, LFPulse.ar(31.3, 0, 0.4)), 400, 0.3);
	azimuth = atan2(y, x); // azimuth in radians
	panValue = (azimuth / 0.5pi).clip2(1); // make a value for Pan2 from azimuth
	Pan2.ar(DelayL.ar(motorSound, 110/344, distance/344), panValue, amplitude)
}.play)
::

method:: ring1
Ring modulation plus first source.
discussion::
Return the value of  ((a*b) + a). This is more efficient than using
separate unit generators for the multiply and add.

See also link::#*::, link::#ring1::, link::#ring2::, link::#ring3::, link::#ring4::.
code::
{ (FSinOsc.ar(800) ring1: FSinOsc.ar(XLine.kr(200,500,5))) * 0.125 }.play;
::
same as :
code::
(
{
	var a, b;
	a = FSinOsc.ar(800);
	b = FSinOsc.ar(XLine.kr(200,500,5));
	((a * b) + a) * 0.125
}.play)
::
normal ring modulation:
code::
(
{
	var a, b;
	a = FSinOsc.ar(800);
	b = FSinOsc.ar(XLine.kr(200,500,5));
	(a * b) * 0.125
}.play)
::

method:: ring2
Ring modulation plus both sources.
discussion::
Return the value of  ((a*b) + a + b). This is more efficient than using
separate unit generators for the multiply and adds.
code::
{ (FSinOsc.ar(800) ring2: FSinOsc.ar(XLine.kr(200,500,5))) * 0.125 }.play;
::
same as :
code::
(
{
	var a, b;
	a = FSinOsc.ar(800);
	b = FSinOsc.ar(XLine.kr(200,500,5));
	((a * b) + a + b) * 0.125
}.play)
::

method:: ring3
Ring modulation variant.
discussion::
Return the value of  (a*a *b). This is more efficient than using
separate unit generators for each multiply.
code::
{ (FSinOsc.ar(800) ring3: FSinOsc.ar(XLine.kr(200,500,5))) * 0.125 }.play;
::
same as :
code::
(
{
	var a, b;
	a = FSinOsc.ar(800);
	b = FSinOsc.ar(XLine.kr(200,500,5));
	(a * a * b) * 0.125;
}.play)
::

method:: ring4
Ring modulation variant.
discussion::
Return the value of  ((a*a *b) - (a*b*b)). This is more efficient than using
separate unit generators for each operation.
code::
{ (FSinOsc.ar(800) ring4: FSinOsc.ar(XLine.kr(200,500,5))) * 0.125 }.play;
::
same as :
code::
(
{
	var a, b;
	a = FSinOsc.ar(800);
	b = FSinOsc.ar(XLine.kr(200,500,5));
	((a * a * b) - (a * b * b)) * 0.125
}.play)
::

method:: sumsqr
Sum of squares.
discussion::
Return the value of  (a*a) + (b*b). This is more efficient than using
separate unit generators for each operation.
code::
{ (FSinOsc.ar(800) sumsqr: FSinOsc.ar(XLine.kr(200,500,5))) * 0.125 }.play;
::
same as :
code::
(
{
	var a, b;
	a = FSinOsc.ar(800);
	b = FSinOsc.ar(XLine.kr(200,500,5));
	((a * a) + (b * b)) * 0.125
}.play)
::

method:: difsqr
Difference of squares.
discussion::
Return the value of  (a*a) - (b*b). This is more efficient than using
separate unit generators for each operation.
code::
{ (FSinOsc.ar(800) difsqr: FSinOsc.ar(XLine.kr(200,500,5))) * 0.125 }.play;
::
same as :
code::
(
{
	var a, b;
	a = FSinOsc.ar(800);
	b = FSinOsc.ar(XLine.kr(200,500,5));
	((a * a) - (b * b)) * 0.125
}.play)
::

method:: sqrsum
Square of the sum.
discussion::
Return the value of  (a + b)**2. This is more efficient than using
separate unit generators for each operation.
code::
{ (FSinOsc.ar(800) sqrsum: FSinOsc.ar(XLine.kr(200,500,5))) * 0.125 }.play;
::
same as :
code::
(
{
	var a, b, c;
	a = FSinOsc.ar(800);
	b = FSinOsc.ar(XLine.kr(200,500,5));
	c = a + b;
	(c * c) * 0.125
}.play)
::

method:: sqrdif
Square of the difference.
discussion::
Return the value of  (a - b)**2. This is more efficient than using
separate unit generators for each operation.
code::
{ (FSinOsc.ar(800) sqrdif: FSinOsc.ar(XLine.kr(200,500,5))) * 0.125 }.play;
::
same as :
code::
(
{
	var a, b, c;
	a = FSinOsc.ar(800);
	b = FSinOsc.ar(XLine.kr(200,500,5));
	c = a - b;
	(c * c) * 0.125
}.play)
::

method:: absdif
Absolute value of the difference. code:: abs(a - b) ::
discussion::
code::
(
{ // creates a rhythm
var mul = 0.2 absdif: FSinOsc.ar(2, 0, 0.5);
FSinOsc.ar(440, 0, mul);
}.play;
)
::

method:: moddif
On a circle, there are two distances between two points. This operator returns the smaller value of the two.
discussion::
code::
{ Line.ar(0, 4, 0.01).moddif(0) }.plot;
(
{
var mul = 0.2 moddif: FSinOsc.ar(2, 0, 0.5);
FSinOsc.ar(440, 0, mul);
}.play;
)
::

method:: thresh
Thresholding.
discussion::
0 when a < b, otherwise a.
code::
{ LFNoise0.ar(50, 0.5) thresh: 0.45 }.play // a low-rent gate
::

method:: amclip
Two quadrant multiply.
discussion::
0  when  b <= 0,  a*b  when  b > 0
code::
{ WhiteNoise.ar.amclip(FSinOsc.kr(1,0.2)) }.play; // makes a sine envelope
::

method:: scaleneg
Scale negative part of input.
discussion::
a*b when a < 0, otherwise a.
code::
{ FSinOsc.ar(500).scaleneg(Line.ar(1,-1,4)) }.play;
::

method:: clip2
Bilateral clipping.
discussion::
clips input wave a to +/- b
code::
(
{
	var a;
	a = Line.ar(-2, 2, 0.01);
	a.clip2
}.plot2
)

{ FSinOsc.ar(400).clip2(0.2) }.scope; // clipping distortion

{ FSinOsc.ar(1000).clip2(Line.kr(0,1,8)) }.scope;
::

method:: wrap2
Bilateral wrapping.
discussion::
wraps input wave to +/- b
code::
(
{
	var a;
	a = Line.ar(-2, 2, 0.01);
	a.wrap2
}.plot
)

{ FSinOsc.ar(1000).wrap2(Line.kr(0,1.01,8)) }.scope;
::

method:: fold2
Bilateral folding.
discussion::
folds input wave a to +/- b
code::
(
{
	var a;
	a = Line.ar(-2, 2, 0.01);
	a.fold2
}.plot
)


{ FSinOsc.ar(1000).fold2(Line.kr(0,1,8)) }.scope;
::

method:: excess
Residual of clipping.
discussion::
Returns the difference of the original signal and its clipped form: (a - clip2(a,b)).
code::
(
{
	var a;
	a = Line.ar(-2, 2, 0.01);
	a.excess
}.plot
)

{ FSinOsc.ar(1000).excess(Line.kr(0,1,8)) }.play;
::