1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
title::Control Structures
summary:: flow control
categories:: Language
related:: Classes/Boolean
Control structures in SuperCollider are implemented via message sends. Here are a few of those available.
See link::Reference/Syntax-Shortcuts:: for the various ways expressions can be written.
section:: Basic Control Structures
method:: if
Conditional execution is implemented via the code::if:: message. The code::if:: message is sent to an expression which must return a link::Classes/Boolean:: value.
In addition it takes two arguments: a function to execute if the expression is true and another optional function to execute if the expression is false. The code::if:: message returns the value of the function which is executed. If the falseFunc is not present and the expression is false then the result of the if message is nil.
discussion::
Syntax
code::
if(expr) { true body } { false body };
// alternate
if(expr, trueFunc, falseFunc);
// possible but harder to read, so, not preferred
expr.if (trueFunc, falseFunc);
::
Examples
code::
if([false, true].choose) {
"expression was true".postln // true function
} {
"expression was false".postln // false function
};
)
(
var a = 1, z;
z = if(a < 5) { 100 } { 200 };
z.postln;
)
(
var x;
if(x.isNil) { x = 99 };
x.postln;
)
::
method:: while
The while message implements conditional execution of a loop. If the testFunc answers true when evaluated, then the loopFunc is evaluated and the process is repeated. Once the testFunc returns false, the loop terminates.
discussion::
Syntax
code::
while { testFunc body } { loopFunc body };
// alternate
while({ testFunc body }, { loopFunc body });
// possible but harder to read, so, not preferred
{ testFunc body }.while({ loopFunc body });
::
Example
code::
(
i = 0;
while { i < 5 } { i = i + 1; "boing".postln };
)
::
while expressions are also optimized by the compiler if they do not contain variable declarations in the testFunc and the loopFunc.
method:: for
The for message implements iteration over an integer series from a starting value to an end value stepping by one each time. A function is evaluated each iteration and is passed the iterated numeric value as an argument.
discussion::
Syntax
code::
for(startValue, endValue) { loop body }
// alternate
for(startValue, endValue, function)
// possible but harder to read, so, not preferred
startValue.for ( endValue, function )
::
Example
code::
for(3, 7) { arg i; i.postln }; // prints values 3 through 7
::
method:: forBy
The forBy selector implements iteration over an integer series with a variable step size. A function is evaluated each iteration and is passed the iterated numeric value as an argument.
discussion::
Syntax
code::
forBy(startValue, endValue, stepValue) { loop body };
forBy(startValue, endValue, stepValue, function);
// possible but harder to read, so, not preferred
startValue.forBy(endValue, stepValue, function);
::
Example
code::
forBy(0, 8, 2) { arg i; i.postln }; // prints values 0 through 8 by 2's
::
method:: do
Do is used to iterate over a link::Classes/Collection::. Positive Integers also respond to code::do:: by iterating from zero up to their value. Collections iterate, calling the function for each object they contain. Other kinds of Objects respond to do by passing themselves to the function one time. The function is called with two arguments, the item, and an iteration counter.
discussion::
Syntax
code::
collection.do { loop body };
// alternate
collection.do(function)
// alternates, rarely seen
do(collection, function)
do(collection) { loop body };
::
Example
code::
[ 1, 2, "abc", (3@4) ].do { arg item, i; [i, item].postln; };
5.do { arg item; item.postln }; // iterates from zero to four
"you".do { arg item; item.postln }; // a String is a collection of characters
'they'.do { arg item; item.postln }; // a Symbol is a singular item
(8..20).do { arg item; item.postln }; // iterates from eight to twenty
(8,10..20).do { arg item; item.postln }; // iterates from eight to twenty, with stepsize two
Routine {
var i = 10;
while { i > 0 } {
i.yield;
i = i - 5.0.rand
}
}.do { arg item; item.postln }; // 'do' applies to the Routine
::
Note:: The syntax code::(8..20).do:: uses an optimization to avoid generating an array that is used only for iteration (but which would be discarded thereafter). The return value of code:: (8..20).do { |item| item.postln } :: is 8, the starting value.
However, if code::do:: is written as an infix binary operator, as in code::(8..20) do: { |item| item.postln }::, then it will generate the series as an array first, before calling Array:do. One side effect of this is that it is valid to code::do:: over an infinite series within a routine only if code::do:: is written as a method call. If it is written as a binary operator, you will get a "wrong type" error because the array must be finite.
code::
// OK: 'do' is a method call
r = Routine {
(8 .. ).do { |i|
i.yield;
};
};
r.next;
-> 8
-> 9 etc.
// ERROR: 'do' is an operator
r = Routine {
(8 .. ) do: { |i|
i.yield;
};
};
r.next;
ERROR: Primitive '_SimpleNumberSeries' failed.
Wrong type.
::
::
method:: switch
Object implements a switch method which allows for conditional evaluation with multiple cases. These are implemented as pairs of test objects (tested using if this == test.value) and corresponding functions to be evaluated if true.
The switch statement will be inlined if the test objects are all Floats, Integers, Symbols, Chars, nil, false, true and if the functions have no variable or argument declarations. The inlined switch uses a hash lookup (which is faster than nested if statements), so it should be very fast and scale to any number of clauses.
note::Hash lookup by definition implies testing emphasis::identity:: rather than equality: a code::switch:: construction that is not inlined will test code::==::, while one that is inlined will test code::===::. See the examples. One implication is that strings should be avoided: code::switch(text) { "abc" } { ... }:: may not match, even if code::text == "abc"::. Symbols are preferred.::
note::Floating point numbers may sometimes appear to be equal while differing slightly in their binary representation: code::(2/3) == (1 - (1/3)):: is false. Therefore floats should be avoided in code::switch:: constructions.::
discussion::
Syntax
code::
switch(value)
{ testvalue1 } { truebody1 }
{ testvalue2 } { truebody2 }
{ testvalue3 } { truebody3 }
{ testvalue4 } { truebody4 }
...
{ defaultbody };
switch(value,
testvalue1, trueFunction1,
testvalue2, trueFunction2,
...
testvalueN, trueFunctionN,
defaultFunction
);
::
Examples
code::
(
var x = 0; //also try 1
switch(x, 0, { "hello" }, 1, { "goodbye" })
)
(
var x = 0; //also try 1
switch(x) { 0 } { "hello" } { 1 } { "goodbye" };
)
(
var x, z;
z = [0, 1, 1.1, 1.3, 1.5, 2];
switch (z.choose.postln,
1, { \no },
1.1, { \wrong },
1.3, { \wrong },
1.5, { \wrong },
2, { \wrong },
0, { \true }
).postln;
)
::
or:
code::
(
var x, z;
z = [0, 1, 1.1, 1.3, 1.5, 2];
x = switch(z.choose)
{1} { \no }
{1.1} { \wrong }
{1.3} { \wrong }
{1.5} { \wrong }
{2} { \wrong }
{0} { \true };
x.postln;
)
::
Inlined vs non-inlined comparison:
code::
(
switch(1.0)
{ 1 } { "yes" }
{ "no" }
)
-> no
::
The identity comparison code::1.0 === 1:: is false: while 1.0 and 1 represent the same numeric value, one is floating point and the other is an integer, so they cannot be identical.
code::
(
// 'var x' prevents inlining
switch(1.0)
{ 1 } { var x; "yes" }
{ "no" }
)
WARNING: Float:switch is unsafe, rounding via Float:asInteger:switch
-> yes
::
method:: case
Function implements a case method which allows for conditional evaluation with multiple cases. Since the receiver represents the first case this can be simply written as pairs of test functions and corresponding functions to be evaluated if true. Case is inlined and is therefore just as efficient as nested if statements.
discussion::
Example
code::
(
var i, x, z;
z = [0, 1, 1.1, 1.3, 1.5, 2];
i = z.choose;
x = case
{ i == 1 } { \no }
{ i == 1.1 } { \wrong }
{ i == 1.3 } { \wrong }
{ i == 1.5 } { \wrong }
{ i == 2 } { \wrong }
{ i == 0 } { \true };
x.postln;
)
::
method:: try
Function implements a code::try:: method which allows catching exceptions thrown by code and run the exception handler. For more information see link::Classes/Exception::.
discussion::
Example
code::
try {
...code...
} { |error|
...exception handler...
};
::
method:: protect
Function implements a code::protect:: method which allows protecting code from exceptions thrown by code.
The difference with code::try:: is the exception handler code is always run, even if there is no exception.
If an exception occurs, it is rethrown after the exception handler block is run.
For more information see link::Classes/Exception::.
discussion::
Example
code::
file = File(path, "r");
protect {
// work with the file here, which might cause an error
} {
file.close;
};
::
section:: Other Control Structures
Using Functions, many control structures can be defined like the ones above. In the class link::Classes/Collection#Iteration:: there are many more messages defined for iterating over Collections.
section:: Inline optimization
code::if::, code::while::, code::switch:: and code::case:: expressions are optimized (i.e. inlined) by the compiler if they do not contain variable declarations in the functions. The optimization plucks the code from the functions and uses a more efficient jump statement:
code::
(
{
if(6 == 9) {
"hello".postln;
} {
"world".postln;
}
}.def.dumpByteCodes
)
BYTECODES: (20)
0 2C 06 PushInt 6
2 2C 09 PushInt 9
4 E6 SendSpecialBinaryArithMsg '=='
5 F8 00 07 JumpIfFalse 7 (15)
8 41 PushLiteral "hello"
9 B0 TailCallReturnFromFunction
10 C1 3A SendSpecialMsg 'postln'
12 FC 00 04 JumpFwd 4 (19)
15 40 PushLiteral "world"
16 B0 TailCallReturnFromFunction
17 C1 3A SendSpecialMsg 'postln'
19 F2 BlockReturn
-> < closed FunctionDef >
::
Failure to inline due to variable declarations:
code::
(
{
if(6 == 9, {
var notHere;
"hello".postln;
},{
"world".postln;
})
}.def.dumpByteCodes
)
WARNING: FunctionDef contains variable declarations and so will not be inlined.
in file 'selected text'
line 4 char 14:
var notHere;
"hello".postln;
-----------------------------------
BYTECODES: (13)
0 2C 06 PushInt 6
2 2C 09 PushInt 9
4 E6 SendSpecialBinaryArithMsg '=='
5 04 00 PushLiteralX instance of FunctionDef - closed
7 04 01 PushLiteralX instance of FunctionDef - closed
9 B0 TailCallReturnFromFunction
10 C3 0B SendSpecialMsg 'if'
12 F2 BlockReturn
-> < closed FunctionDef >
::
You can switch on and off the above warning (see: link::Classes/LanguageConfig#*postInlineWarnings::)
code::
LanguageConfig.postInlineWarnings_(true) // warn
LanguageConfig.postInlineWarnings_(false) // ignore it.
::
|