File: Syntax-Shortcuts.schelp

package info (click to toggle)
supercollider 1%3A3.13.0%2Brepack-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 80,292 kB
  • sloc: cpp: 476,363; lisp: 84,680; ansic: 77,685; sh: 25,509; python: 7,909; makefile: 3,440; perl: 1,964; javascript: 974; xml: 826; java: 677; yacc: 314; lex: 175; objc: 152; ruby: 136
file content (290 lines) | stat: -rw-r--r-- 9,783 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
title:: Syntax Shortcuts
summary:: syntactic sugar
categories:: Language
related:: Overviews/SymbolicNotations

section:: Introduction

This file shows a number of syntax equivalences in the compiler.

Because of the multiple syntax equivalences, some expressions can be written in many different ways. All of the following do the same thing and compile to the same code.
code::
// new argument syntax

(1..10).collect({ |n| n.squared });  // receiver syntax
collect((1..10), { |n| n.squared }); // function call syntax
(1..10).collect { |n| n.squared };   // receiver syntax with trailing-block argument
collect ((1..10)) { |n| n.squared }; // function call syntax with trailing-block argument
(1..10) collect: { |n| n.squared };  // binary operator syntax


// old argument syntax

(1..10).collect({ arg n; n.squared });  // receiver syntax
collect((1..10), { arg n; n.squared }); // function call syntax
(1..10).collect { arg n; n.squared };   // receiver syntax with trailing-block argument
collect ((1..10)) { arg n; n.squared }; // function call syntax with trailing-block argument
(1..10) collect: { arg n; n.squared };  // binary operator syntax


// partial application syntax

(1..10).collect(_.squared);   // receiver syntax
collect((1..10), _.squared);  // function call syntax
(1..10) collect: _.squared;   // binary operator syntax
::

You could even start expanding out the equivalent of (1..10) which is really a shortcut for code:: series(1, nil, 10) ::. This could also be written code:: 1.series(nil,10) ::. This adds another 26 variations to the 13 variations above.

section:: Defining functions and classes

subsection:: shorter argument lists in definitions
table::
## instead of writing: || you can write:
## code:: { arg x; x < 2 } :: || code:: { |x| x < 2 } ::
## code:: { arg x = 123; x < 2 } :: || code:: { |x = 123| x < 2 } ::
## code:: { arg x = 10.rand; x < 2 } :: || code:: { |x = (10.rand)| x < 2 } :: or code:: {|x(10.rand)| x < 2 } ::
::
note::
When using the new code::||:: syntax, the default value needs to be enclosed in parenthesis if it's not a literal.
::

subsection:: partial application
table::
## instead of writing: || you can write:
## code:: { |x| object.msg(a, x, b) } :: || code:: object.msg(a, _, b) ::
## code:: { |x,y| object.msg(a, x, y) } :: || code:: object.msg(a, _, _) ::
## code:: { |x| a + x } :: || code:: a + _ ::
## code:: { |x| [a, b, x] } :: || code:: [a, b, _] ::
## code:: { |x| (a: x) } :: || code:: (a: _) ::
::
note::
There are some limitations to the extent of the surrounding expression that code::_:: can capture. See link::Reference/Partial-Application:: for details.
::

subsection:: defining instance variable accessor methods
table::
## instead of writing: || you can write:
## code::
Thing { var x;
    x { ^x }
    x_ { arg z; x = z; }
}
:: || code::
Thing { var <>x; }
::
::


section:: Sending messages, calling functions, and instantiating objects

subsection:: function-call and receiver notations
table::
## instead of writing: || you can write:
## code:: f(x, y) :: || code:: x.f(y) ::
## code:: f(g(x)) :: || code:: x.g.f ::
::

subsection:: calling the 'value' method
table::
## instead of writing: || you can write:
## code:: f.value(x) :: || code:: f.(x) ::
::

subsection:: instantiate object
table::
## instead of writing: || you can write:
## code:: Point.new(3, 4) :: || code:: Point(3, 4) ::
::

subsection:: calling an instance variable setter method
table::
## instead of writing: || you can write:
## code:: p.x_(y) :: || code:: p.x = y :: or code:: x(p) = y ::
::

subsection:: calling performList
table::
## instead of writing: || you can write:
## code:: object.performList(\method, a, b, array) :: || code:: object.method(a, b, *array) ::
::



subsection:: moving blocks out of argument lists (trailing-block arguments)
table::
## instead of writing: || you can write:
## code:: if (x < 3, { \abc }, { \def }) :: || code:: if (x < 3) { \abc } { \def } ::
## code:: z.do({ |x| x.play }) :: || code:: z.do { |x| x.play } ::
## code:: while({ a < b }, { a = a * 2 }) :: || code:: while { a < b } { a = a * 2 } ::
## code:: Pfunc({ rrand(3, 6) }) :: || code:: Pfunc { rrand(3, 6) } ::
::

note::
Trailing arguments must be literal blocks. No other expression may be used as a trailing argument, even if it evaluates to a Function. For example, you cannot use a variable name as a trailing argument, even if this variable was assigned a Function.

Using a selector as an infix binary operator (discussed in the next section) enables a visually similar construct that does allow arbitrary expressions as operands, but these binary-operator constructs technically do not have trailing arguments.
code::
(
var f = { |n| (2**n) + (3**n) };
collect((1..5), f); // valid
(1..5).collect(f);  // valid
(1..5) collect: f;  // valid (selector as binary operator)
)
(1..5).collect f;   // syntax error (non-block as a trailing argument)
collect((1..5)) f;  // syntax error (ibid.)
::
A fairly common case when this syntactic restriction matters: a partial application using the code::_:: syntax is an expression evaluating to a Function, but it is not a literal block. Therefore:
code::
do(6) _.postln  // syntax error
6.do _.postln   // syntax error
do(6, _.postln) // valid
6.do(_.postln)  // valid
6 do: _.postln  // valid
::
::

subsection:: use a selector (method name) as a binary operator
table::
## instead of writing: || you can write:
## code:: div(x, y) :: || code:: x div: y ::
::

warning::
When switching between various forms of call syntax, one has to be mindful that a selector as a binary operator has equal precedence with most other binary operators, but has lower precedence than the receiver dot notation (code::.::). Therefore, replacing a receiver syntax (dot) with a selector written as a binary operator can change the result of some expressions, as illustrated below:

code::
4 + 5.div(2) // -> 6
4 + 5 div: 2 // -> 4

// This is a left-to-right application of two dots,
// the first of which has a trailing block argument.
(1..3).collect { |x| x + 1 }.bubble
// -> [ [ 2, 3, 4 ] ]

// This is a selector binary operator ("collect:") applied
// to two arguments, the second of which is the result
// of applying "bubble" (via dot syntax) to a function.
(1..3) collect: { |x| x + 1 }.bubble
// -> [ [ a Function ], [ a Function ], [ a Function ] ]

// Changing precedence in the above with explicit parentheses
((1..3) collect: { |x| x + 1 }).bubble
// -> [ [ 2, 3, 4 ] ]

// Or by uniform use of selectors as binary operators
(1..3) collect: { |x| x + 1 } bubble: 0
::
::


Native infix operators like code::+:: can also be written in (longer) function-call form, e.g.:

table::
## infix: || function call:
## code:: 1 + 2 :: || code:: (+)(1, 2) ::
::

The latter form is usually not a shortcut, except when one wants to dynamically change the adverb of an operator, for instance that of code::+++::, because adverbs in the infix notation are interpreted as literals.

code::
(
var a = (_+_) ! [3, 3]; // -> [ [ 0, 1, 2 ], [ 1, 2, 3 ], [ 2, 3, 4 ] ]
(0..2) collect: (+++)(a, 99, _) flatten: 3; // iterated adverb
)
(0..2) collect: (a +++._ 99) flatten: 3;    // syntax error
(
var a = (_+_) ! [3, 3];
(0..2) collect: {|v| a +++.v 99} flatten: 3 // the literal adverb \v is used
)
::


section:: Collections

subsection:: create a collection
table::
## instead of writing: || you can write:
## code:: Set.new.add(3).add(4).add(5) :: || code:: Set[3, 4, 5] ::
## code:: Array[3, 4, 5] :: || code:: [3, 4, 5] ::
::

subsection:: indexing elements
table::
## instead of writing: || you can write:
## code:: z.at(i) :: || code:: z[i] ::
## code:: z.put(i, y) :: || code:: z[i] = y ::
::

subsection:: accessing subranges of Arrays
table::
## instead of writing: || you can write:
## code:: a.copyRange(4, 8) :: || code:: a[4..8] ::
## code:: a.copyToEnd(4) :: || code:: a[4..] ::
## code:: a.copyFromStart(4) :: || code:: a[..4] ::
::

subsection:: creating arithmetic series
table::
## instead of writing: || you can write:
## code:: Array.series(16, 1, 1) :: or code:: series(1, nil, 16) :: || code:: (1..16) ::
## code:: Array.series(6, 1, 2) :: or code:: series(1, 3, 11) :: || code:: (1, 3..11) ::
::
There is also the similar syntax for creating an iterating link::Classes/Routine:::
table::
## instead of writing: || you can write:
## code:: seriesIter(1, 3, 11) :: || code:: (:1, 3..11) ::
::
note::
SuperCollider also supports link::Guides/ListComprehensions::.
::

As a simple (non-combinatorial) example, the following are equivalent ways of listing the first 10 primes:

code::
(:1..) select: _.isPrime nextN: 10;
{: x, x <- (1..), x.isPrime }.nextN(10);
::

subsection:: creating Events
table::
## instead of writing: || you can write:
## code:: Event[\a -> 1, \b -> 2] :: || code:: (a: 1, b: 2) ::
::

subsection:: creating Arrays with key-value pairs
table::
## instead of writing: || you can write:
## code:: [\a, 1, \b, 2] :: || code:: [a: 1, b: 2] ::
::

section:: Other shortcuts

subsection:: multiple assignment
table::
## instead of writing: || you can write:
## code:: x = z.at(0); y = z.at(1); :: || code:: # x, y = z; ::
::

subsection:: accessing environment variables
table::
## instead of writing: || you can write:
## code:: 'myName'.envirGet :: || code:: ~myName ::
## code:: 'myName'.envirPut(9) :: || code:: ~myName = 9 ::
::

subsection:: shorthand for Symbols
table::
## instead of writing: || you can write:
## code:: 'mySymbol' :: || code:: \mySymbol ::
::
note::
The shorthand only admits a subset of the symbols that may be enclosed in single quotes. See link::Reference/Literals#Symbols:: for details.
::

subsection:: creating a Ref
table::
## instead of writing: || you can write:
## code:: Ref.new(thing) :: || code:: `thing ::
::