File: Streams-Patterns-Events5.schelp

package info (click to toggle)
supercollider 1%3A3.13.0%2Brepack-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 80,292 kB
  • sloc: cpp: 476,363; lisp: 84,680; ansic: 77,685; sh: 25,509; python: 7,909; makefile: 3,440; perl: 1,964; javascript: 974; xml: 826; java: 677; yacc: 314; lex: 175; objc: 152; ruby: 136
file content (327 lines) | stat: -rw-r--r-- 7,619 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
title:: Understanding Streams, Patterns and Events - Part 5
summary:: Event.default
related:: Tutorials/Streams-Patterns-Events1, Tutorials/Streams-Patterns-Events2, Tutorials/Streams-Patterns-Events3, Tutorials/Streams-Patterns-Events4, Tutorials/Streams-Patterns-Events6, Tutorials/Streams-Patterns-Events7
categories:: Tutorials>Streams-Patterns-Events

More about the default Event:

section::protoEvents

The protoEvent contains default values for many useful parameters.

The default protoEvent is code::Event.default::. It provides default bindings for duration, envelope, instrument, making a very simple Pattern directly playable:

code::
(
// an endless sequence of middle Cs
Pbind.new.play
)
::

By adding other bindings, you can override the defaults in the protoEvent.

code::
(
// duration 0.25 beats (16th notes)
Pbind( \dur, 0.25 ).play
)
::

code::
(
// specifying the pitch in terms of midinote
// see also The pitch model below
Pbind(
	\dur, 0.125,
	\legato, 0.2,
	\midinote, Pseq(#[60, 62, 64, 65, 67, 69, 71, 72], inf)
).play
)
::

section::~finish

Event.default contains a function bound to the Symbol code::'finish':: which is called for each new event generated in order to complete any computations that depend on the other values in the event.

section::The pitch model

Event.default implements a multi level pitch model which allows composition using modal scale degrees, equal division note values, midi note values, or frequencies in Hertz. These different ways of specifying the pitch can all be used interchangeably.

The way this works is due to the default values bound to the Symbols of the pitch model.

The lowest level Symbol in the pitch model is code::'freq'::. The default binding for code::'freq':: is a link::Classes/Function:: which calculates the frequency by getting the value of code::'midinote'::, adding a transpose value and converting it to Hertz using code::midicps::.

code::
	~freq = {
		(~midinote.value + ~ctranspose).midicps;
	};
::

If you compose with code::'freq':: directly then this default function is overridden.

code::
(
Pbind(
	\dur, 0.25,
	\freq, Pseq(#[300, 400, 500, 700, 900], inf)
).play;
)
::

Event.default's code::'finish':: function sends the value message to the current binding of code::'freq':: in order to get the value for the frequency and adds a detune value to it which transposes the frequency in Hertz.

code::
(
Pbind(
	\dur, 0.25,
	\detune, -20,
	\freq, Pseq(#[300, 400, 500, 700, 900], inf)
).play
)
::

The next level is code::'midinote':: which is by default bound to this function:

code::
	~midinote = {
		(~note.value + ~gtranspose + (~octave * divs) + ~root)
				* 12.0 / ~stepsPerOctave;
	};
::

This function gets the value bound to code::'note':: which is a value expressed in some equal temperament, not necessarily 12. It adds a gamut transpose value code::'gtranspose'::, and scales from the number of notes per octave being used into 12 notes per octave MIDI key values. If you compose with code::'midinote':: directly then that will override this function.

code::
(
Pbind(
	\dur, 0.2,
	\midinote, Pseq([ Pshuf(#[60, 61, 62, 63, 64, 65, 66, 67], 3) ], inf)
).play
)
::

Another level higher is code::'note':: which is defined by default by this function:

code::
	~note = {
		var divs;
		divs = ~stepsPerOctave;
		(~degree + ~mtranspose).degreeToKey(~scale, divs);
	};
::

This function derives the note value from the next higher level variables which specify a pitch from a scale. These variables are defined as follows:

code::
	~stepsPerOctave = 12.0;
::

The number of equal divisions of an octave for this tuning. The equal temperament defined by this variable is known as the gamut. If you wanted to work in cents for example you could set this to 1200.0.

code::
	~octave = 5.0;
::

The current octave. Middle C is the lowest note in octave 5.

code::
	~root = 0.0;
::

The root of the scale given in equal divisions defined by code::~stepsPerOctave::.

code::
	~scale = #[0, 2, 4, 5, 7, 9, 11]; // diatonic major scale
::

A set of scale pitches given in equal divisions defined by code::~stepsPerOctave::.

code::
	~degree = 0;
::

A scale degree index into the code::~scale::. 0 is the root and the scale wraps in the manner defined by code::degreeToKey::.

code::
	~mtranspose = 0;
::

A modal transposition value that is added to the scale degree.

code::
	~gtranspose = 0;
::

A gamut transposition value that is added to the gamut pitch.

code::
	~ctranspose = 0;
::

A chromatic transposition value expressed in semitones.

section::Pitch model Examples

code::
(
// a simple scale degree sequence
Pbind(
		// -7 is 8ve below, -3 is a 4th below,
		// 0 is root, 2 is 3rd above, 4 is 5th above, 7 is 8ve above.
	\degree, Pseq([ Pshuf(#[-7,-3,0,2,4,7], 4), Pseq([0,1,2,3,4,5,6,7]) ], inf),
	\dur, 0.15
).play
)


(
// change the octave
Pbind(
	\dur, 0.15,
	\octave, 4,
	\degree, Pseq([ Pshuf(#[-7,-3,0,2,4,7], 4), Pseq([0,1,2,3,4,5,6,7]) ], inf)
).play
)


(
// change the scale
Pbind(
	\dur, 0.15,
	\scale, [0, 2, 3, 5, 7, 8, 10],
	\degree, Pseq([ Pshuf(#[-7,-3,0,2,4,7], 4), Pseq([0,1,2,3,4,5,6,7]) ], inf)
).play
)


(
// modal transposition
var notes;
notes = Pseq([ Pshuf(#[-7,-3,0,2,4,7], 4), Pseq([0,1,2,3,4,5,6,7]) ], 1);
Pseq([
	Pbind(
		\dur, 0.15,
		\mtranspose, 0,
		\degree, notes
	),
	Pbind(
		\dur, 0.15,
		\mtranspose, 1,
		\degree, notes
	),
	Pbind(
		\dur, 0.15,
		\mtranspose, 2,
		\degree, notes
	)
], inf).play
)


(
// chromatic transposition
var notes;
notes = Pseq([ Pshuf(#[-7,-3,0,2,4,7], 4), Pseq([0,1,2,3,4,5,6,7]) ], 1);
Pseq([
	Pbind(
		\dur, 0.15,
		\ctranspose, 0,
		\degree, notes
	),
	Pbind(
		\dur, 0.15,
		\ctranspose, 3,
		\degree, notes
	),
	Pbind(
		\dur, 0.15,
		\ctranspose, -3,
		\degree, notes
	)
], inf).play
)


(
// frequency detuning
var notes;
notes = Pseq([ Pshuf(#[-7,-3,0,2,4,7], 4), Pseq([0,1,2,3,4,5,6,7]) ], 1);
Pseq([
	Pbind(
		\dur, 0.15,
		\detune, 0,
		\degree, notes
	),
	Pbind(
		\dur, 0.15,
		\detune, 20,
		\degree, notes
	),
	Pbind(
		\dur, 0.15,
		\detune, 40,
		\degree, notes
	)
], inf).play
)


(
// chords. If an Array of pitches is returned by a Stream for pitch, then a chord
// will be played.
Pbind(
	\dur, 0.15,
	\degree, Pseq([
		Pshuf(#[-7,-3,0,2,4,7], 4)+[0,4],
		Pseq( [0,1,2,3,4,5,6,7] )+[0,2]
	], inf)
).play
)


(
// composing in non 12 equal temperaments. 72 tone equal temp.
Pbind(
	\stepsPerOctave, 72,
	\note, Pseq([
			// 1/1, 7/6, 3/2, 7/4, 9/8
		Pseq([ [0,16,42,58,84], Pseq([ 0, 16, 42, 58, 72, 84 ], 2), [0,16,42,58,84] ], 1),
			// 1/1, 6/5, 3/2, 9/5, 9/8
		Pseq([ [0,19,42,61,84], Pseq([ 0, 19, 42, 61, 72, 84 ], 2), [0,19,42,61,84] ], 1),
			// 1/1, 5/4, 3/2, 15/8, 9/8
		Pseq([ [0,23,42,65,84], Pseq([ 0, 23, 42, 65, 72, 84 ], 2), [0,23,42,65,84] ], 1),
			// 1/1, 9/7, 3/2, 27/14, 9/8
		Pseq([ [0,26,42,68,84], Pseq([ 0, 26, 42, 68, 72, 84 ], 2), [0,26,42,68,84] ], 1)
		], inf),
	\dur, Pseq([ 1.2, Pseq([0.15], 12), 1.2], inf)
).play
)
::

section::The duration model

Duration is expressed in beats and is bound to the code::'dur':: symbol. The sustain time of a note can be expressed directly in beats or by using a legato value which is multiplied by the note duration to get the sustain time.

code::
(
// changing duration
Pbind(
	\dur, Pseq([ Pgeom(0.05, 1.1, 24), Pgeom(0.5, 0.909, 24) ], inf),
	\midinote, Pseq(#[60, 58], inf)
).play
)


(
// changing legato value
Pbind(
	\dur, 0.2,
	\legato, Pseq([ Pseries(0.05, 0.05, 40), Pseries(2.05, -0.05, 40) ], inf),
	\midinote, Pseq(#[48, 51, 55, 58, 60, 58, 55, 51], inf)
).play
)
::

To go to the next file:
link::Tutorials/Streams-Patterns-Events6::