1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
|
CondVar {
var waitingThreads;
*new { ^super.newCopyArgs(Array.new) }
wait { |predicate|
if(predicate.isNil) {
this.prWait
} {
// If the predicate is already true, we return immediately. If not,
// we block until the predicate is true after being signalled.
// The waiting thread may be signaled several times before the predicate
// becomes true, hence the loop is necessary.
while { predicate.value.not } { this.prWait }
}
}
waitFor { |timeoutBeats, predicate|
var endingBeats;
// May throw if preconditions are not met.
timeoutBeats = this.prConvertTimeoutBeatsToSafeValue(timeoutBeats);
// This is a slightly more complex version of the body of `wait`. The
// extra complexity comes from maintaining the timeout requirement.
if(predicate.isNil) {
// Interface requirement: immediately return if timeout is non-positive
if(timeoutBeats <= 0) { ^false };
^this.prWaitFor(timeoutBeats)
} {
endingBeats = thisThread.beats + timeoutBeats;
// The waiting thread may be signaled several times before the predicate
// becomes true, so the loop is necessary.
while {
predicate.value.not
} {
// We only get here when the predicate is not true, so we can return
// false immediately if we are timed out.
if(thisThread.beats >= endingBeats) { ^false };
// If the timeout expires, return the value of the predicate; otherwise,
// we were signalled, so go back through the loop.
if(this.prWaitFor(endingBeats - thisThread.beats).not) { ^predicate.value };
};
^true
}
}
signalOne {
if (waitingThreads.isEmpty.not) {
this.prWakeThread(waitingThreads.removeAt(0));
}
}
signalAll {
waitingThreads.do(this.prWakeThread(_));
waitingThreads = Array.new;
}
// Also disables `copy`, since it redirects to `shallowCopy` on Object
shallowCopy { this.shouldNotImplement(thisMethod) }
deepCopy { this.shouldNotImplement(thisMethod) }
prWait {
this.prSleepThread(thisThread);
\wait.yield
}
// Returns true iff we were woken via signal (and not timeout)
prWaitFor { |timeoutBeats|
// precondition: timeoutBeats is a Float or Integer, positive, and not inf
var waitingThread = thisThread;
var didNotTimeout = true;
var timeoutThread = Routine {
var wokenThread;
timeoutBeats.wait;
didNotTimeout = false;
// If our waiting thread is signaled before this timeout fires
// the timeout routine will be stopped after prWait below
// and we won't get here.
wokenThread = this.prRemoveWaitingThread(waitingThread);
// if wokenThread is nil, we asssume a signal happened
// immediately prior to timeout and the thread is already awake
// no call to prWakeThread happens in this case
if(wokenThread.notNil) { this.prWakeThread(wokenThread) };
};
timeoutThread.play(thisThread.clock);
this.prWait;
timeoutThread.stop;
^didNotTimeout
}
prSleepThread { |t| waitingThreads = waitingThreads.add(t.threadPlayer) }
prWakeThread { |t| t.clock.sched(0, t) }
prRemoveWaitingThread { |t| ^waitingThreads.remove(t.threadPlayer) }
// Precondition checks for `waitFor` timeout. May throw.
prConvertTimeoutBeatsToSafeValue { |n|
n = case
{ n.class === Float or: { n.class === Integer } } { n }
{ n.respondsTo(\asInteger) } { n.asInteger }
{ n.respondsTo(\asFloat) } { n.asFloat }
{ n };
if(n.class !== Float and: { n.class !== Integer }) {
Error("Timeout must be a Float or Integer, or convertible to one").throw
};
if(n.isNaN) { Error("Timeout must not be NaN").throw };
// -inf is checked in negative-time check after this.
if(n === inf) { Error("Timeout must not be inf; use `wait` instead").throw };
^n
}
}
|