1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
Complex : Number {
var <>real, <>imag;
*new { arg real, imag;
^super.newCopyArgs(real, imag);
}
+ { arg aNumber, adverb;
if ( aNumber.isNumber, {
^Complex.new(real + aNumber.real, imag + aNumber.imag)
},{
^aNumber.performBinaryOpOnComplex('+', this, adverb)
});
}
- { arg aNumber, adverb;
if ( aNumber.isNumber, {
^Complex.new(real - aNumber.real, imag - aNumber.imag)
},{
^aNumber.performBinaryOpOnComplex('-', this, adverb)
});
}
* { arg aNumber, adverb;
if ( aNumber.isNumber, {
^Complex.new(
// these are implemented as additional message sends so that UGens can
// optimize the 6 operations down to 2 UGen instances.
(real * aNumber.real) - (imag * aNumber.imag),
(real * aNumber.imag) + (imag * aNumber.real)
)
},{
^aNumber.performBinaryOpOnComplex('*', this, adverb)
});
}
/ { arg aNumber, adverb;
var denom, yr, yi;
if ( aNumber.isNumber, {
yr = aNumber.real;
yi = aNumber.imag;
denom = 1.0 / (yr * yr + (yi * yi));
^Complex.new(
((real * yr) + (imag * yi)) * denom,
((imag * yr) - (real * yi)) * denom)
},{
^aNumber.performBinaryOpOnComplex('/', this, adverb)
});
}
< { arg aNumber, adverb;
if ( aNumber.isNumber, {
^real < aNumber.real
},{
^aNumber.performBinaryOpOnComplex('<', this, adverb)
});
}
== { arg aNumber, adverb;
if ( aNumber.isNumber, {
^real == aNumber.real and: { imag == aNumber.imag }
},{
^aNumber.performBinaryOpOnComplex('==', this, adverb)
});
}
hash {
^real.hash << 1 bitXor: imag.hash
}
// double dispatch
performBinaryOpOnSimpleNumber { arg aSelector, aNumber, adverb;
^aNumber.asComplex.perform(aSelector, this, adverb)
}
performBinaryOpOnSignal { arg aSelector, aSignal, adverb;
^aSignal.asComplex.perform(aSelector, this)
}
performBinaryOpOnComplex { arg aSelector, aNumber, adverb;
BinaryOpFailureError(this, aSelector, [aNumber, adverb]).throw;
}
performBinaryOpOnUGen { arg aSelector, aUGen, adverb;
^aUGen.asComplex.perform(aSelector, this, adverb)
}
neg { ^Complex.new(real.neg, imag.neg) }
conjugate { ^Complex.new(real, imag.neg) }
squared { ^this * this }
cubed { ^this * this * this }
exp { ^exp(real) * Complex.new(cos(imag), sin(imag)) }
reciprocal {
var denom;
// undefined cases (no extended exponential numbers defined yet)
if(real == inf or: { imag == inf } or: { real == -inf } or: { imag == -inf }) {
^Complex(0/0, 0/0)
};
// otherwise use the standard definition
denom = reciprocal(real.squared + imag.squared);
^Complex(real * denom, imag.neg * denom)
}
sqrt {
var mag, sign;
mag = this.magnitude;
sign = if(imag.isPositive) { 1 } { -1 }; // +1 >= 0, -1 < 0
^(
2.sqrt.reciprocal * Complex(
(mag + real).sqrt,
(mag - real).sqrt * sign
)
)
}
pow { arg aNumber; // return(this ** aNumber)
// Notation below:
// t=this, p=power, i=sqrt(-1)
// Derivation:
// t ** p = exp(p*log(t)) = ... = r*exp(i*a)
var p_real, p_imag, t_mag, t_phase, t_maglog;
var mag, phase;
aNumber = aNumber.asComplex;
p_real = aNumber.real;
p_imag = aNumber.imag;
if(p_real == 0.0 and: { p_imag == 0 }) { ^Complex(1.0, 0.0) };
if(p_imag == 0.0 and: { imag == 0.0 } and: { real > 0.0 }) {
^Complex(real ** p_real, 0.0)
};
t_mag = this.magnitude;
if(t_mag == 0.0) { ^Complex(0.0, 0.0) };
t_maglog = log(t_mag);
t_phase = this.phase;
mag = exp((p_real * t_maglog) - (p_imag * t_phase));
phase = (p_imag * t_maglog) + (p_real * t_phase);
^Complex(mag * cos(phase), mag * sin(phase))
}
magnitude { ^hypot(real, imag) }
abs { ^hypot(real, imag) }
rho { ^hypot(real, imag) }
magnitudeApx { ^hypotApx(real, imag) }
angle { ^atan2(imag, real) }
phase { ^atan2(imag, real) }
theta { ^atan2(imag, real) }
coerce { arg aNumber; ^aNumber.asComplex }
round { arg aNumber = 1.0;
^Complex(real.round(aNumber), imag.round(aNumber))
}
asInteger { ^real.asInteger }
asFloat { ^real.asFloat }
asComplex { ^this }
asPolar { ^Polar.new(this.rho, this.theta) }
asPoint { ^Point.new(this.real, this.imag) }
printOn { arg stream;
stream << "Complex( " << real << ", " << imag << " )";
}
}
|