File: BelaUGens.cpp

package info (click to toggle)
supercollider 1%3A3.13.0%2Brepack-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 80,292 kB
  • sloc: cpp: 476,363; lisp: 84,680; ansic: 77,685; sh: 25,509; python: 7,909; makefile: 3,440; perl: 1,964; javascript: 974; xml: 826; java: 677; yacc: 314; lex: 175; objc: 152; ruby: 136
file content (736 lines) | stat: -rw-r--r-- 27,087 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
/*
    SuperCollider real time audio synthesis system
    Copyright (c) 2002 James McCartney. All rights reserved.
    http://www.audiosynth.com

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301  USA
*/

/*
 *  BELA I/O UGens created by nescivi, (c) 2016
 *  https://www.nescivi.eu
 */

#include "Bela.h"
#include "cobalt/stdio.h"

#include "SC_PlugIn.h"

class AccessBuffer {
protected:
    AccessBuffer(float* buffer, unsigned int count): m_buffer(buffer), m_count(count), m_last(buffer[count - 1]) {}
    const float& at(unsigned int n) const {
        if (n < m_count)
            return m_buffer[n];
        else
            return m_last;
    }
    float& at(unsigned int n) {
        if (n < m_count)
            return m_buffer[n];
        else
            return m_last;
    }
    void updateBufferWithLast() { m_buffer[m_count - 1] = m_last; }
    unsigned int count() const { return m_count; }

private:
    float* m_buffer;
    float m_last;
    const unsigned int m_count;
};

// Two buffer views which on which you can call [] for arbitrarily large numbers, but
// if it exceeds count, you will get back the value it had at [count-1] at
// initialisation.
// Additionally, upon destruction of an AccessBufferWriter object, the
// [count-1] element wil be replaced with the cached value, which may have been
// overwritten when assigning the returned value. This is done heuristically.
// These classes are useful when dealing with Sc buffers transparently without
// worrying whether they are at audio or control rate.
// It is also safe against overlapping buffers, as long as:
// - only one object writes to the buffer
// - you write to elements incrementally (starting from 0)
// - no one tries to access the buffer if not with one of the Writer or Reader
// objects, as long as they are alive
// - for each element, you write after reading (note: the way this provides safety is
// that you can keep calling [n] with n >= count and you will still access the
// valid cached value and not whathever the writer may have written to it
// since)

class AccessBufferWriter : public AccessBuffer {
public:
    AccessBufferWriter(float* buffer, unsigned int count): AccessBuffer(buffer, count), m_lastTouched(false) {};
    ~AccessBufferWriter() {
        // calling [], you may have been passed a reference to last instead of
        // a pointer into the buffer itself. Here, we ensure we put it back into the buffer
        if (m_lastTouched)
            updateBufferWithLast();
    }
    float& operator[](unsigned int n) {
        if (n >= count())
            m_lastTouched = true;
        return at(n);
    }

private:
    bool m_lastTouched;
};

class AccessBufferReader : public AccessBuffer {
public:
    AccessBufferReader(float* buffer, unsigned int count): AccessBuffer(buffer, count) {};
    const float& operator[](unsigned int n) const { return at(n); }
};

static InterfaceTable* ft;

static inline void belaUGenInitOutput(Unit* unit) { (unit->mCalcFunc)(unit, 1); }

static inline void belaUGenDisable(Unit* unit) {
    SETCALC(ClearUnitOutputs);
    belaUGenInitOutput(unit);
}

struct MultiplexAnalogIn : public Unit {};


struct AnalogIn : public Unit {
    int mAnalogPin;
};

struct AnalogOut : public Unit {
    int mAnalogPin;
};

// static digital pin, static function (in)
struct DigitalIn : public Unit {
    int mDigitalPin;
};

// static digital pin, static function (out) - uses DigitalWrite and a check whether value changed
struct DigitalOut : public Unit {
    int mDigitalPin;
    int mLastOut;
};

// flexible digital pin, flexible function (in or out)
struct DigitalIO : public Unit {
    int mDigitalPin;
    int mLastDigitalIn;
    int mLastDigitalOut;
};

//////////////////////////////////////////////////////////////////////////////////////////////////

void MultiplexAnalogIn_next_aaa(MultiplexAnalogIn* unit, int inNumSamples) {
    auto* context = unit->mWorld->mBelaContext;

    float* fin = IN(0); // analog in pin, can be modulated
    float* fmux = IN(1); // mux channel, can be modulated
    float* out = OUT(0);
    float analogValue = 0;

    // context->audioFrames should be equal to inNumSamples
    for (unsigned int n = 0; n < inNumSamples; n++) {
        int analogPin = static_cast<int>(fin[n]);
        int muxChannel = static_cast<int>(fmux[n]);
        if ((analogPin < 0) || (analogPin >= context->analogInChannels) || (muxChannel < 0)
            || (muxChannel >= context->multiplexerChannels)) {
            rt_fprintf(stderr, "MultiplexAnalogIn warning: analog pin must be between %i and %i, it is %i\n", 0,
                       context->analogInChannels, analogPin);
            rt_fprintf(stderr, "MultiplexAnalogIn warning: muxChannel must be between %i and %i, it is %i\n", 0,
                       context->multiplexerChannels, muxChannel);
        } else {
            // is there something like NI? analogReadNI(context, 0, analogPin);
            analogValue = multiplexerAnalogRead(context, analogPin, muxChannel);
        }
        out[n] = analogValue;
    }
}

void MultiplexAnalogIn_next_aak(MultiplexAnalogIn* unit, int inNumSamples) {
    auto* context = unit->mWorld->mBelaContext;

    float* fin = IN(0); // analog in pin, can be modulated
    float* out = OUT(0);
    float analogValue = 0;
    int muxChannel = static_cast<int>(IN0(1));

    // context->audioFrames should be equal to inNumSamples
    for (unsigned int n = 0; n < inNumSamples; n++) {
        int analogPin = static_cast<int>(fin[n]);
        if ((analogPin < 0) || (analogPin >= context->analogInChannels) || (muxChannel < 0)
            || (muxChannel >= context->multiplexerChannels)) {
            rt_fprintf(stderr, "MultiplexAnalogIn warning: analog pin must be between %i and %i, it is %i\n", 0,
                       context->analogInChannels, analogPin);
            rt_fprintf(stderr, "MultiplexAnalogIn warning: muxChannel must be between %i and %i, it is %i\n", 0,
                       context->multiplexerChannels, muxChannel);
        } else {
            // is there something like NI? analogReadNI(context, 0, analogPin);
            analogValue = multiplexerAnalogRead(context, analogPin, muxChannel);
        }
        out[n] = analogValue;
    }
}

void MultiplexAnalogIn_next_aka(MultiplexAnalogIn* unit, int inNumSamples) {
    auto* context = unit->mWorld->mBelaContext;

    float* fmux = IN(1); // mux channel, can be modulated
    float* out = OUT(0);
    int analogPin = static_cast<int>(IN0(0));
    float analogValue = 0;

    // context->audioFrames should be equal to inNumSamples
    for (unsigned int n = 0; n < inNumSamples; n++) {
        int muxChannel = static_cast<int>(fmux[n]);
        if ((analogPin < 0) || (analogPin >= context->analogInChannels) || (muxChannel < 0)
            || (muxChannel >= context->multiplexerChannels)) {
            rt_fprintf(stderr, "MultiplexAnalogIn warning: analog pin must be between %i and %i, it is %i\n", 0,
                       context->analogInChannels, analogPin);
            rt_fprintf(stderr, "MultiplexAnalogIn warning: muxChannel must be between %i and %i, it is %i\n", 0,
                       context->multiplexerChannels, muxChannel);
        } else {
            // is there something like NI? analogReadNI(context, 0, analogPin);
            analogValue = multiplexerAnalogRead(context, analogPin, muxChannel);
        }
        out[n] = analogValue;
    }
}

void MultiplexAnalogIn_next_akk(MultiplexAnalogIn* unit, int inNumSamples) {
    auto* context = unit->mWorld->mBelaContext;

    int analogPin = static_cast<float>(IN0(0));
    int muxChannel = static_cast<float>(IN0(1));
    float* out = OUT(0);

    if ((analogPin < 0) || (analogPin >= context->analogInChannels) || (muxChannel < 0)
        || (muxChannel >= context->multiplexerChannels)) {
        rt_fprintf(stderr, "MultiplexAnalogIn warning: analog pin must be between %i and %i, it is %i\n", 0,
                   context->analogInChannels, analogPin);
        rt_fprintf(stderr, "MultiplexAnalogIn warning: muxChannel must be between %i and %i, it is %i\n", 0,
                   context->multiplexerChannels, muxChannel);
        for (unsigned int n = 0; n < inNumSamples; n++) {
            out[n] = 0;
        }
    } else {
        for (unsigned int n = 0; n < inNumSamples; n++) {
            // is there something like NI? analogReadNI(context, 0, analogPin);
            out[n] = multiplexerAnalogRead(context, analogPin, muxChannel);
        }
    }
}

void MultiplexAnalogIn_next_kkk(MultiplexAnalogIn* unit, int inNumSamples) {
    auto* context = unit->mWorld->mBelaContext;

    int analogPin = static_cast<float>(IN0(0));
    int muxChannel = static_cast<float>(IN0(1));

    if ((analogPin < 0) || (analogPin >= context->analogInChannels)) {
        rt_fprintf(stderr, "MultiplexAnalogIn warning: analog pin must be between %i and %i, it is %i\n", 0,
                   context->analogInChannels, analogPin);
        OUT0(0) = 0.0;
    } else if ((muxChannel < 0) || (muxChannel >= context->multiplexerChannels)) {
        rt_fprintf(stderr, "MultiplexAnalogIn warning: muxChannel must be between %i and %i, it is %i\n", 0,
                   context->multiplexerChannels, muxChannel);
        OUT0(0) = 0.0;
    } else {
        OUT0(0) = multiplexerAnalogRead(context, analogPin, muxChannel);
    }
}

void MultiplexAnalogIn_Ctor(MultiplexAnalogIn* unit) {
    BelaContext* context = unit->mWorld->mBelaContext;

    if (!context->multiplexerChannels) {
        belaUGenDisable(unit);
        rt_fprintf(stderr, "MultiplexAnalogIn Error: the UGen needs BELA Multiplexer Capelet enabled\n");
        return;
    }

    // set calculation method
    if (unit->mCalcRate == calc_FullRate) {
        if (INRATE(0) == calc_FullRate) {
            if (INRATE(1) == calc_FullRate) {
                SETCALC(MultiplexAnalogIn_next_aaa);
            } else {
                SETCALC(MultiplexAnalogIn_next_aak);
            }
        } else {
            if (INRATE(1) == calc_FullRate) {
                SETCALC(MultiplexAnalogIn_next_aka);
            } else {
                SETCALC(MultiplexAnalogIn_next_akk);
            }
        }
    } else {
        if ((INRATE(0) == calc_FullRate) || (INRATE(1) == calc_FullRate)) {
            rt_fprintf(stderr,
                       "MultiplexAnalogIn warning: output rate is control rate, so cannot change analog pin or "
                       "multiplex channel at audio rate\n");
        }
        SETCALC(MultiplexAnalogIn_next_kkk);
    }
    belaUGenInitOutput(unit);
}

//////////////////////////////////////////////////////////////////////////////////////////////////

static bool updatePin(unsigned int numChannels, unsigned int newPin, int* oldPin, const char* label) {
    bool isValid = newPin < numChannels;
    if (newPin != *oldPin) {
        *oldPin = newPin;
        if (!isValid) {
            rt_fprintf(stderr, "%s warning: pin must be 0 <= pin <= %i, it is %i\n", label, numChannels - 1, newPin);
        }
    }
    return isValid;
}

// returns false if pin is out of range, so that _next functions should avoid using it
bool AnalogIn_updatePin(AnalogIn* unit, int newPin) {
    BelaContext* context = unit->mWorld->mBelaContext;
    return updatePin(context->analogInChannels, newPin, &unit->mAnalogPin, "AnalogIn");
}

void AnalogIn_next_aa(AnalogIn* unit, int inNumSamples) {
    auto* context = unit->mWorld->mBelaContext;

    float* fin = IN(0); // analog in pin, can be modulated
    float* out = OUT(0);
    float analogValue = 0;

    for (unsigned int n = 0; n < inNumSamples; n++) {
        int analogPin = static_cast<int>(fin[n]);
        if (AnalogIn_updatePin(unit, analogPin)) {
            analogValue = analogReadNI(context, n, analogPin);
        }
        out[n] = analogValue;
    }
}

void AnalogIn_next_ak(AnalogIn* unit, int inNumSamples) {
    auto* context = unit->mWorld->mBelaContext;

    int analogPin = static_cast<int>(IN0(0));
    float* out = OUT(0);

    if (AnalogIn_updatePin(unit, analogPin)) {
        for (unsigned int n = 0; n < inNumSamples; n++) {
            out[n] = analogReadNI(context, n, analogPin);
        }
    } else {
        for (unsigned int n = 0; n < inNumSamples; n++) {
            out[n] = 0;
        }
    }
}


void AnalogIn_next_kk(AnalogIn* unit, int inNumSamples) {
    auto* context = unit->mWorld->mBelaContext;

    int analogPin = static_cast<int>(IN0(0));

    if (AnalogIn_updatePin(unit, analogPin)) {
        OUT0(0) = analogReadNI(context, 0, analogPin);
    } else {
        OUT0(0) = 0.0;
    }
}

void AnalogIn_Ctor(AnalogIn* unit) {
    BelaContext* context = unit->mWorld->mBelaContext;

    if (!context->analogInChannels) {
        belaUGenDisable(unit);
        rt_fprintf(stderr, "AnalogIn Error: the UGen needs BELA analog inputs enabled\n");
        return;
    }

    unit->mAnalogPin = -1;

    // set calculation method
    if (unit->mCalcRate == calc_FullRate) {
        if (INRATE(0) == calc_FullRate) {
            SETCALC(AnalogIn_next_aa);
        } else {
            SETCALC(AnalogIn_next_ak);
        }
    } else {
        if (INRATE(0) == calc_FullRate) {
            rt_fprintf(stderr,
                       "AnalogIn warning: output rate is control rate, so cannot change analog pin at audio rate\n");
        }
        SETCALC(AnalogIn_next_kk);
    }
    belaUGenInitOutput(unit);
}

//////////////////////////////////////////////////////////////////////////////////////////////////

// returns false if pin is out of range, so that _next functions should avoid using it
bool AnalogOut_updatePin(AnalogOut* unit, int newPin) {
    BelaContext* context = unit->mWorld->mBelaContext;
    return updatePin(context->analogOutChannels, newPin, &unit->mAnalogPin, "AnalogOut");
}

void AnalogOut_next_aaa(AnalogOut* unit, int inNumSamples) {
    auto* context = unit->mWorld->mBelaContext;

    float* fin = IN(0); // analog in pin, can be modulated
    float* in = IN(1);

    for (unsigned int n = 0; n < inNumSamples; n++) {
        // read input
        int analogPin = static_cast<int>(fin[n]);
        if (AnalogOut_updatePin(unit, analogPin)) {
            analogWriteOnceNI(context, n, unit->mAnalogPin, in[n]);
        }
    }
}

void AnalogOut_next_aka(AnalogOut* unit, int inNumSamples) {
    auto* context = unit->mWorld->mBelaContext;

    int analogPin = static_cast<int>(IN0(0)); // analog in pin, can be modulated
    float* in = IN(1);

    if (AnalogOut_updatePin(unit, analogPin)) {
        for (unsigned int n = 0; n < inNumSamples; n++) {
            analogWriteOnceNI(context, n, unit->mAnalogPin, in[n]);
        }
    }
}

void AnalogOut_next_aak(AnalogOut* unit, int inNumSamples) {
    auto* context = unit->mWorld->mBelaContext;

    float* fin = IN(0); // analog in pin, can be modulated
    float in = IN0(1);

    for (unsigned int n = 0; n < inNumSamples; n++) {
        // read input
        int analogPin = static_cast<int>(fin[n]);
        if (AnalogOut_updatePin(unit, analogPin)) {
            analogWriteOnceNI(context, n, unit->mAnalogPin, in);
        }
    }
}

void AnalogOut_next_kk(AnalogOut* unit, int inNumSamples) {
    auto* context = unit->mWorld->mBelaContext;

    int analogPin = static_cast<int>(IN0(0)); // analog in pin, can be modulated
    float in = IN0(1);

    if (AnalogOut_updatePin(unit, analogPin)) {
        analogWriteNI(context, 0, unit->mAnalogPin, in);
    }
}

void AnalogOut_Ctor(AnalogOut* unit) {
    BelaContext* context = unit->mWorld->mBelaContext;

    if (!context->analogOutChannels) {
        belaUGenDisable(unit);
        rt_fprintf(stderr, "AnalogOut Error: the UGen needs BELA analog outputs enabled\n");
        return;
    }

    unit->mAnalogPin = -1;

    if (unit->mCalcRate == calc_FullRate) { // ugen running at audio rate;
        if (INRATE(0) == calc_FullRate) { // pin changed at audio rate
            if (INRATE(1) == calc_FullRate) { // output changed at audio rate
                SETCALC(AnalogOut_next_aaa);
            } else {
                SETCALC(AnalogOut_next_aak);
            }
        } else { // pin changed at control rate
            if (INRATE(1) == calc_FullRate) { // output changed at audio rate
                SETCALC(AnalogOut_next_aka);
            } else { // analog output only changes at control rate anyways
                rt_fprintf(
                    stderr,
                    "AnalogOut warning: inputs are control rate, so AnalogOut is also running at control rate\n");
                SETCALC(AnalogOut_next_kk);
            }
        }
    } else { // ugen at control rate
        if ((INRATE(0) == calc_FullRate) || (INRATE(1) == calc_FullRate)) {
            rt_fprintf(stderr,
                       "AnalogOut warning: output rate is control rate, so cannot change inputs at audio rate\n");
        }
        SETCALC(AnalogOut_next_kk);
    }
    belaUGenInitOutput(unit);
}

//////////////////////////////////////////////////////////////////////////////////////////////////

void DigitalIn_next_a(DigitalIn* unit, int inNumSamples) {
    auto* context = unit->mWorld->mBelaContext;

    int pinid = unit->mDigitalPin;
    float* out = OUT(0);

    for (unsigned int n = 0; n < inNumSamples; n++) {
        out[n] = static_cast<float>(digitalRead(context, n, pinid));
    }
}

void DigitalIn_next_k(DigitalIn* unit, int inNumSamples) {
    auto* context = unit->mWorld->mBelaContext;

    int pinid = unit->mDigitalPin;
    OUT0(0) = static_cast<float>(digitalRead(context, 0, pinid));
}

void DigitalIn_Ctor(DigitalIn* unit) {
    BelaContext* context = unit->mWorld->mBelaContext;

    unit->mDigitalPin = static_cast<int>(IN0(0)); // digital in pin -- cannot change after construction
    if ((unit->mDigitalPin < 0) || (unit->mDigitalPin >= context->digitalChannels)) {
        rt_fprintf(stderr, "DigitalIn error: digital pin must be between %i and %i, it is %i\n", 0,
                   context->digitalChannels, unit->mDigitalPin);
        belaUGenDisable(unit);
        return;
    }
    pinMode(context, 0, unit->mDigitalPin, INPUT);
    // set calculation method
    if (unit->mCalcRate == calc_FullRate) { // ugen running at audio rate;
        SETCALC(DigitalIn_next_a);
    } else {
        SETCALC(DigitalIn_next_k);
    }
    belaUGenInitOutput(unit);
}

//////////////////////////////////////////////////////////////////////////////////////////////////

void DigitalOut_next_a(DigitalOut* unit, int inNumSamples) {
    auto* context = unit->mWorld->mBelaContext;

    int pinid = unit->mDigitalPin;
    float* in = IN(1);
    int lastOut = unit->mLastOut;

    for (unsigned int n = 0; n < inNumSamples; n++) {
        // read input
        float newinput = in[n];
        if (newinput > 0.5) {
            if (lastOut == 0) {
                lastOut = 1;
                digitalWrite(context, n, pinid, 1);
            }
        } else if (lastOut == 1) {
            lastOut = 0;
            digitalWrite(context, n, pinid, 0);
        }
    }
    unit->mLastOut = lastOut;
}

void DigitalOut_next_k(DigitalOut* unit, int inNumSamples) {
    auto* context = unit->mWorld->mBelaContext;

    int pinid = unit->mDigitalPin;
    float in = IN0(1);
    int lastOut = unit->mLastOut;

    if (in > 0.5) {
        if (lastOut == 0) {
            lastOut = 1;
            digitalWrite(context, 0, pinid, 1);
        }
    } else if (lastOut == 1) {
        lastOut = 0;
        digitalWrite(context, 0, pinid, 0);
    }
    unit->mLastOut = lastOut;
}

void DigitalOut_Ctor(DigitalOut* unit) {
    BelaContext* context = unit->mWorld->mBelaContext;

    unit->mDigitalPin = static_cast<int>(IN0(0)); // digital in pin -- cannot change after construction
    unit->mLastOut = 0;

    if ((unit->mDigitalPin < 0) || (unit->mDigitalPin >= context->digitalChannels)) {
        rt_fprintf(stderr, "DigitalOut error: digital pin must be between %i and %i, it is %i\n", 0,
                   context->digitalChannels, unit->mDigitalPin);
        belaUGenDisable(unit);
    }
    // initialize first buffer
    pinMode(context, 0, unit->mDigitalPin, OUTPUT);
    digitalWrite(context, 0, unit->mDigitalPin, unit->mLastOut);

    if (unit->mCalcRate == calc_FullRate) { // ugen running at audio rate;
        if (INRATE(1) == calc_FullRate) { // output changed at audio rate
            SETCALC(DigitalOut_next_a);
        } else { // not much reason to actually do audiorate output
            rt_fprintf(stderr, "DigitalOut warning: inputs are control rate, so DigitalOut will run at control rate\n");
            SETCALC(DigitalOut_next_k);
        }
    } else { // ugen at control rate
        if (INRATE(1) == calc_FullRate) {
            rt_fprintf(stderr,
                       "DigitalOut warning: UGen rate is control rate, so cannot change inputs at audio rate\n");
        }
        SETCALC(DigitalOut_next_k);
    }
    belaUGenInitOutput(unit);
}

//////////////////////////////////////////////////////////////////////////////////////////////////

// returns false if pin is out of range, so that _next functions should avoid using it
bool DigitalIO_updatePin(DigitalIO* unit, int newPin) {
    BelaContext* context = unit->mWorld->mBelaContext;
    return updatePin(context->digitalChannels, newPin, &unit->mDigitalPin, "DigitalIO");
}

static int parseDigitalValue(float value) { return value > 0.5; }

static int parseDigitalMode(float mode) { return mode < 0.5 ? INPUT : OUTPUT; }

void DigitalIO_next_universal(DigitalIO* unit, int inNumSamples) {
    auto* context = unit->mWorld->mBelaContext;
    const bool ugenAudioRate = (calc_FullRate == unit->mCalcRate);
    const bool pinAudioRate = (calc_FullRate == INRATE(0));
    const bool inputAudioRate = (calc_FullRate == INRATE(1));
    const bool modeAudioRate = (calc_FullRate == INRATE(2));

    unsigned int outsCount = ugenAudioRate ? inNumSamples : 1;
    unsigned int pinsCount = pinAudioRate ? inNumSamples : 1;
    unsigned int insCount = inputAudioRate ? inNumSamples : 1;
    unsigned int modesCount = modeAudioRate ? inNumSamples : 1;
    AccessBufferWriter outs(OUT(0), outsCount); // may be the same as pins
    const AccessBufferReader pins(IN(0), pinsCount);
    const AccessBufferReader ins(IN(1), insCount);
    const AccessBufferReader modes(IN(2), modesCount);

    bool lastDigIn = unit->mLastDigitalIn;
    // with properly initialised AccessBuffers, we can use [n] below regardless
    // of the K/A rate of each buffer
    for (unsigned int n = 0; n < inNumSamples; ++n) {
        unsigned int pin = static_cast<int>(pins[n]);
        if (DigitalIO_updatePin(unit, pin)) {
            int mode = parseDigitalMode(modes[n]);
            if (1 == inNumSamples) {
                // we are only ever going to go up to 1 (i.e.: processed at
                // control rate). So fill up the rest of the buffer.
                pinMode(context, 0, unit->mDigitalPin, mode);
            } else {
                pinModeOnce(context, n, unit->mDigitalPin, mode);
            }
            if (INPUT == mode) {
                lastDigIn = digitalRead(context, n, unit->mDigitalPin);
            } else {
                bool digOut = parseDigitalValue(ins[n]);
                if (1 == inNumSamples) {
                    // we are only ever going to go up to 1 (i.e.: processed at
                    // control rate). So fill up the rest of the buffer.
                    digitalWrite(context, 0, unit->mDigitalPin, digOut);
                } else {
                    digitalWriteOnce(context, n, unit->mDigitalPin, digOut);
                }
            }
        }
        outs[n] = lastDigIn;
    }
    unit->mLastDigitalIn = lastDigIn;
}

void DigitalIO_Ctor(DigitalIO* unit) {
    BelaContext* context = unit->mWorld->mBelaContext;

    unit->mDigitalPin = 0;
    unit->mLastDigitalIn = 0;
    unit->mLastDigitalOut = 0;
    SETCALC(DigitalIO_next_universal);
    belaUGenInitOutput(unit);
}

//////////////////////////////////////////////////////////////////////////////////////////////////

struct BelaScopeOut : public Unit {
    unsigned int numScopeChannels;
    unsigned int offset;
};

void BelaScopeOut_next(BelaScopeOut* unit, unsigned int numSamples) {
    float* scopeBuffer = unit->mWorld->mBelaScope->buffer;
    if (!scopeBuffer)
        return;
    unsigned int numChannels = unit->numScopeChannels;
    unsigned int maxChannels = unit->mWorld->mBelaMaxScopeChannels;
    unsigned int scopeBufferSamples = unit->mWorld->mBelaScope->bufferSamples;
    float* inputPointers[numChannels];
    // input 0: channelOffset
    // inputs 1 to numInputs-1 : signal inputs
    for (unsigned int ch = 0; ch < numChannels; ++ch)
        inputPointers[ch] = IN(ch + 1); // skip IN(0)

    for (unsigned int frame = unit->offset; frame < scopeBufferSamples; frame += maxChannels)
        for (unsigned int ch = 0; ch < numChannels; ++ch)
            scopeBuffer[frame + ch] += *inputPointers[ch]++;
    unit->mWorld->mBelaScope->touched = true;
}

void BelaScopeOut_Ctor(BelaScopeOut* unit) {
    BelaScope* scope = unit->mWorld->mBelaScope;
    if (!scope || !scope->buffer) {
        rt_fprintf(stderr, "BelaScopeOut error: Scope not initialized on server\n");
        belaUGenDisable(unit);
        return;
    };

    int offset = static_cast<int>(IN0(0));
    unit->offset = static_cast<unsigned int>(offset < 0 ? 0 : offset);
    uint32 maxScopeChannels = unit->mWorld->mBelaMaxScopeChannels;
    uint32 numInputSignals = unit->mNumInputs - 1;
    if (numInputSignals > maxScopeChannels - unit->offset) {
        rt_fprintf(
            stderr,
            "BelaScopeOut warning: can't scope %i channels starting from %i, maxBelaScopeChannels is set to %i\n",
            numInputSignals, offset, maxScopeChannels);
    }
    unit->numScopeChannels = sc_min(numInputSignals, maxScopeChannels - unit->offset);
    if (unit->numScopeChannels <= 0) {
        belaUGenDisable(unit);
    } else {
        BelaScopeOut_next(unit, 1);
        SETCALC(BelaScopeOut_next);
    }
}

//////////////////////////////////////////////////////////////////////////////////////////////////

PluginLoad(BELA) {
    ft = inTable;

    DefineSimpleUnit(MultiplexAnalogIn);
    DefineSimpleUnit(AnalogIn);
    DefineSimpleUnit(AnalogOut);
    DefineSimpleUnit(DigitalIn);
    DefineSimpleUnit(DigitalOut);
    DefineSimpleUnit(DigitalIO);
    DefineSimpleUnit(BelaScopeOut);
}