1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
|
/*
SuperCollider real time audio synthesis system
Copyright (c) 2002 James McCartney. All rights reserved.
http://www.audiosynth.com
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* BELA I/O UGens created by nescivi, (c) 2016
* https://www.nescivi.eu
*/
#include "Bela.h"
#include "cobalt/stdio.h"
#include "SC_PlugIn.h"
class AccessBuffer {
protected:
AccessBuffer(float* buffer, unsigned int count): m_buffer(buffer), m_count(count), m_last(buffer[count - 1]) {}
const float& at(unsigned int n) const {
if (n < m_count)
return m_buffer[n];
else
return m_last;
}
float& at(unsigned int n) {
if (n < m_count)
return m_buffer[n];
else
return m_last;
}
void updateBufferWithLast() { m_buffer[m_count - 1] = m_last; }
unsigned int count() const { return m_count; }
private:
float* m_buffer;
float m_last;
const unsigned int m_count;
};
// Two buffer views which on which you can call [] for arbitrarily large numbers, but
// if it exceeds count, you will get back the value it had at [count-1] at
// initialisation.
// Additionally, upon destruction of an AccessBufferWriter object, the
// [count-1] element wil be replaced with the cached value, which may have been
// overwritten when assigning the returned value. This is done heuristically.
// These classes are useful when dealing with Sc buffers transparently without
// worrying whether they are at audio or control rate.
// It is also safe against overlapping buffers, as long as:
// - only one object writes to the buffer
// - you write to elements incrementally (starting from 0)
// - no one tries to access the buffer if not with one of the Writer or Reader
// objects, as long as they are alive
// - for each element, you write after reading (note: the way this provides safety is
// that you can keep calling [n] with n >= count and you will still access the
// valid cached value and not whathever the writer may have written to it
// since)
class AccessBufferWriter : public AccessBuffer {
public:
AccessBufferWriter(float* buffer, unsigned int count): AccessBuffer(buffer, count), m_lastTouched(false) {};
~AccessBufferWriter() {
// calling [], you may have been passed a reference to last instead of
// a pointer into the buffer itself. Here, we ensure we put it back into the buffer
if (m_lastTouched)
updateBufferWithLast();
}
float& operator[](unsigned int n) {
if (n >= count())
m_lastTouched = true;
return at(n);
}
private:
bool m_lastTouched;
};
class AccessBufferReader : public AccessBuffer {
public:
AccessBufferReader(float* buffer, unsigned int count): AccessBuffer(buffer, count) {};
const float& operator[](unsigned int n) const { return at(n); }
};
static InterfaceTable* ft;
static inline void belaUGenInitOutput(Unit* unit) { (unit->mCalcFunc)(unit, 1); }
static inline void belaUGenDisable(Unit* unit) {
SETCALC(ClearUnitOutputs);
belaUGenInitOutput(unit);
}
struct MultiplexAnalogIn : public Unit {};
struct AnalogIn : public Unit {
int mAnalogPin;
};
struct AnalogOut : public Unit {
int mAnalogPin;
};
// static digital pin, static function (in)
struct DigitalIn : public Unit {
int mDigitalPin;
};
// static digital pin, static function (out) - uses DigitalWrite and a check whether value changed
struct DigitalOut : public Unit {
int mDigitalPin;
int mLastOut;
};
// flexible digital pin, flexible function (in or out)
struct DigitalIO : public Unit {
int mDigitalPin;
int mLastDigitalIn;
int mLastDigitalOut;
};
//////////////////////////////////////////////////////////////////////////////////////////////////
void MultiplexAnalogIn_next_aaa(MultiplexAnalogIn* unit, int inNumSamples) {
auto* context = unit->mWorld->mBelaContext;
float* fin = IN(0); // analog in pin, can be modulated
float* fmux = IN(1); // mux channel, can be modulated
float* out = OUT(0);
float analogValue = 0;
// context->audioFrames should be equal to inNumSamples
for (unsigned int n = 0; n < inNumSamples; n++) {
int analogPin = static_cast<int>(fin[n]);
int muxChannel = static_cast<int>(fmux[n]);
if ((analogPin < 0) || (analogPin >= context->analogInChannels) || (muxChannel < 0)
|| (muxChannel >= context->multiplexerChannels)) {
rt_fprintf(stderr, "MultiplexAnalogIn warning: analog pin must be between %i and %i, it is %i\n", 0,
context->analogInChannels, analogPin);
rt_fprintf(stderr, "MultiplexAnalogIn warning: muxChannel must be between %i and %i, it is %i\n", 0,
context->multiplexerChannels, muxChannel);
} else {
// is there something like NI? analogReadNI(context, 0, analogPin);
analogValue = multiplexerAnalogRead(context, analogPin, muxChannel);
}
out[n] = analogValue;
}
}
void MultiplexAnalogIn_next_aak(MultiplexAnalogIn* unit, int inNumSamples) {
auto* context = unit->mWorld->mBelaContext;
float* fin = IN(0); // analog in pin, can be modulated
float* out = OUT(0);
float analogValue = 0;
int muxChannel = static_cast<int>(IN0(1));
// context->audioFrames should be equal to inNumSamples
for (unsigned int n = 0; n < inNumSamples; n++) {
int analogPin = static_cast<int>(fin[n]);
if ((analogPin < 0) || (analogPin >= context->analogInChannels) || (muxChannel < 0)
|| (muxChannel >= context->multiplexerChannels)) {
rt_fprintf(stderr, "MultiplexAnalogIn warning: analog pin must be between %i and %i, it is %i\n", 0,
context->analogInChannels, analogPin);
rt_fprintf(stderr, "MultiplexAnalogIn warning: muxChannel must be between %i and %i, it is %i\n", 0,
context->multiplexerChannels, muxChannel);
} else {
// is there something like NI? analogReadNI(context, 0, analogPin);
analogValue = multiplexerAnalogRead(context, analogPin, muxChannel);
}
out[n] = analogValue;
}
}
void MultiplexAnalogIn_next_aka(MultiplexAnalogIn* unit, int inNumSamples) {
auto* context = unit->mWorld->mBelaContext;
float* fmux = IN(1); // mux channel, can be modulated
float* out = OUT(0);
int analogPin = static_cast<int>(IN0(0));
float analogValue = 0;
// context->audioFrames should be equal to inNumSamples
for (unsigned int n = 0; n < inNumSamples; n++) {
int muxChannel = static_cast<int>(fmux[n]);
if ((analogPin < 0) || (analogPin >= context->analogInChannels) || (muxChannel < 0)
|| (muxChannel >= context->multiplexerChannels)) {
rt_fprintf(stderr, "MultiplexAnalogIn warning: analog pin must be between %i and %i, it is %i\n", 0,
context->analogInChannels, analogPin);
rt_fprintf(stderr, "MultiplexAnalogIn warning: muxChannel must be between %i and %i, it is %i\n", 0,
context->multiplexerChannels, muxChannel);
} else {
// is there something like NI? analogReadNI(context, 0, analogPin);
analogValue = multiplexerAnalogRead(context, analogPin, muxChannel);
}
out[n] = analogValue;
}
}
void MultiplexAnalogIn_next_akk(MultiplexAnalogIn* unit, int inNumSamples) {
auto* context = unit->mWorld->mBelaContext;
int analogPin = static_cast<float>(IN0(0));
int muxChannel = static_cast<float>(IN0(1));
float* out = OUT(0);
if ((analogPin < 0) || (analogPin >= context->analogInChannels) || (muxChannel < 0)
|| (muxChannel >= context->multiplexerChannels)) {
rt_fprintf(stderr, "MultiplexAnalogIn warning: analog pin must be between %i and %i, it is %i\n", 0,
context->analogInChannels, analogPin);
rt_fprintf(stderr, "MultiplexAnalogIn warning: muxChannel must be between %i and %i, it is %i\n", 0,
context->multiplexerChannels, muxChannel);
for (unsigned int n = 0; n < inNumSamples; n++) {
out[n] = 0;
}
} else {
for (unsigned int n = 0; n < inNumSamples; n++) {
// is there something like NI? analogReadNI(context, 0, analogPin);
out[n] = multiplexerAnalogRead(context, analogPin, muxChannel);
}
}
}
void MultiplexAnalogIn_next_kkk(MultiplexAnalogIn* unit, int inNumSamples) {
auto* context = unit->mWorld->mBelaContext;
int analogPin = static_cast<float>(IN0(0));
int muxChannel = static_cast<float>(IN0(1));
if ((analogPin < 0) || (analogPin >= context->analogInChannels)) {
rt_fprintf(stderr, "MultiplexAnalogIn warning: analog pin must be between %i and %i, it is %i\n", 0,
context->analogInChannels, analogPin);
OUT0(0) = 0.0;
} else if ((muxChannel < 0) || (muxChannel >= context->multiplexerChannels)) {
rt_fprintf(stderr, "MultiplexAnalogIn warning: muxChannel must be between %i and %i, it is %i\n", 0,
context->multiplexerChannels, muxChannel);
OUT0(0) = 0.0;
} else {
OUT0(0) = multiplexerAnalogRead(context, analogPin, muxChannel);
}
}
void MultiplexAnalogIn_Ctor(MultiplexAnalogIn* unit) {
BelaContext* context = unit->mWorld->mBelaContext;
if (!context->multiplexerChannels) {
belaUGenDisable(unit);
rt_fprintf(stderr, "MultiplexAnalogIn Error: the UGen needs BELA Multiplexer Capelet enabled\n");
return;
}
// set calculation method
if (unit->mCalcRate == calc_FullRate) {
if (INRATE(0) == calc_FullRate) {
if (INRATE(1) == calc_FullRate) {
SETCALC(MultiplexAnalogIn_next_aaa);
} else {
SETCALC(MultiplexAnalogIn_next_aak);
}
} else {
if (INRATE(1) == calc_FullRate) {
SETCALC(MultiplexAnalogIn_next_aka);
} else {
SETCALC(MultiplexAnalogIn_next_akk);
}
}
} else {
if ((INRATE(0) == calc_FullRate) || (INRATE(1) == calc_FullRate)) {
rt_fprintf(stderr,
"MultiplexAnalogIn warning: output rate is control rate, so cannot change analog pin or "
"multiplex channel at audio rate\n");
}
SETCALC(MultiplexAnalogIn_next_kkk);
}
belaUGenInitOutput(unit);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
static bool updatePin(unsigned int numChannels, unsigned int newPin, int* oldPin, const char* label) {
bool isValid = newPin < numChannels;
if (newPin != *oldPin) {
*oldPin = newPin;
if (!isValid) {
rt_fprintf(stderr, "%s warning: pin must be 0 <= pin <= %i, it is %i\n", label, numChannels - 1, newPin);
}
}
return isValid;
}
// returns false if pin is out of range, so that _next functions should avoid using it
bool AnalogIn_updatePin(AnalogIn* unit, int newPin) {
BelaContext* context = unit->mWorld->mBelaContext;
return updatePin(context->analogInChannels, newPin, &unit->mAnalogPin, "AnalogIn");
}
void AnalogIn_next_aa(AnalogIn* unit, int inNumSamples) {
auto* context = unit->mWorld->mBelaContext;
float* fin = IN(0); // analog in pin, can be modulated
float* out = OUT(0);
float analogValue = 0;
for (unsigned int n = 0; n < inNumSamples; n++) {
int analogPin = static_cast<int>(fin[n]);
if (AnalogIn_updatePin(unit, analogPin)) {
analogValue = analogReadNI(context, n, analogPin);
}
out[n] = analogValue;
}
}
void AnalogIn_next_ak(AnalogIn* unit, int inNumSamples) {
auto* context = unit->mWorld->mBelaContext;
int analogPin = static_cast<int>(IN0(0));
float* out = OUT(0);
if (AnalogIn_updatePin(unit, analogPin)) {
for (unsigned int n = 0; n < inNumSamples; n++) {
out[n] = analogReadNI(context, n, analogPin);
}
} else {
for (unsigned int n = 0; n < inNumSamples; n++) {
out[n] = 0;
}
}
}
void AnalogIn_next_kk(AnalogIn* unit, int inNumSamples) {
auto* context = unit->mWorld->mBelaContext;
int analogPin = static_cast<int>(IN0(0));
if (AnalogIn_updatePin(unit, analogPin)) {
OUT0(0) = analogReadNI(context, 0, analogPin);
} else {
OUT0(0) = 0.0;
}
}
void AnalogIn_Ctor(AnalogIn* unit) {
BelaContext* context = unit->mWorld->mBelaContext;
if (!context->analogInChannels) {
belaUGenDisable(unit);
rt_fprintf(stderr, "AnalogIn Error: the UGen needs BELA analog inputs enabled\n");
return;
}
unit->mAnalogPin = -1;
// set calculation method
if (unit->mCalcRate == calc_FullRate) {
if (INRATE(0) == calc_FullRate) {
SETCALC(AnalogIn_next_aa);
} else {
SETCALC(AnalogIn_next_ak);
}
} else {
if (INRATE(0) == calc_FullRate) {
rt_fprintf(stderr,
"AnalogIn warning: output rate is control rate, so cannot change analog pin at audio rate\n");
}
SETCALC(AnalogIn_next_kk);
}
belaUGenInitOutput(unit);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// returns false if pin is out of range, so that _next functions should avoid using it
bool AnalogOut_updatePin(AnalogOut* unit, int newPin) {
BelaContext* context = unit->mWorld->mBelaContext;
return updatePin(context->analogOutChannels, newPin, &unit->mAnalogPin, "AnalogOut");
}
void AnalogOut_next_aaa(AnalogOut* unit, int inNumSamples) {
auto* context = unit->mWorld->mBelaContext;
float* fin = IN(0); // analog in pin, can be modulated
float* in = IN(1);
for (unsigned int n = 0; n < inNumSamples; n++) {
// read input
int analogPin = static_cast<int>(fin[n]);
if (AnalogOut_updatePin(unit, analogPin)) {
analogWriteOnceNI(context, n, unit->mAnalogPin, in[n]);
}
}
}
void AnalogOut_next_aka(AnalogOut* unit, int inNumSamples) {
auto* context = unit->mWorld->mBelaContext;
int analogPin = static_cast<int>(IN0(0)); // analog in pin, can be modulated
float* in = IN(1);
if (AnalogOut_updatePin(unit, analogPin)) {
for (unsigned int n = 0; n < inNumSamples; n++) {
analogWriteOnceNI(context, n, unit->mAnalogPin, in[n]);
}
}
}
void AnalogOut_next_aak(AnalogOut* unit, int inNumSamples) {
auto* context = unit->mWorld->mBelaContext;
float* fin = IN(0); // analog in pin, can be modulated
float in = IN0(1);
for (unsigned int n = 0; n < inNumSamples; n++) {
// read input
int analogPin = static_cast<int>(fin[n]);
if (AnalogOut_updatePin(unit, analogPin)) {
analogWriteOnceNI(context, n, unit->mAnalogPin, in);
}
}
}
void AnalogOut_next_kk(AnalogOut* unit, int inNumSamples) {
auto* context = unit->mWorld->mBelaContext;
int analogPin = static_cast<int>(IN0(0)); // analog in pin, can be modulated
float in = IN0(1);
if (AnalogOut_updatePin(unit, analogPin)) {
analogWriteNI(context, 0, unit->mAnalogPin, in);
}
}
void AnalogOut_Ctor(AnalogOut* unit) {
BelaContext* context = unit->mWorld->mBelaContext;
if (!context->analogOutChannels) {
belaUGenDisable(unit);
rt_fprintf(stderr, "AnalogOut Error: the UGen needs BELA analog outputs enabled\n");
return;
}
unit->mAnalogPin = -1;
if (unit->mCalcRate == calc_FullRate) { // ugen running at audio rate;
if (INRATE(0) == calc_FullRate) { // pin changed at audio rate
if (INRATE(1) == calc_FullRate) { // output changed at audio rate
SETCALC(AnalogOut_next_aaa);
} else {
SETCALC(AnalogOut_next_aak);
}
} else { // pin changed at control rate
if (INRATE(1) == calc_FullRate) { // output changed at audio rate
SETCALC(AnalogOut_next_aka);
} else { // analog output only changes at control rate anyways
rt_fprintf(
stderr,
"AnalogOut warning: inputs are control rate, so AnalogOut is also running at control rate\n");
SETCALC(AnalogOut_next_kk);
}
}
} else { // ugen at control rate
if ((INRATE(0) == calc_FullRate) || (INRATE(1) == calc_FullRate)) {
rt_fprintf(stderr,
"AnalogOut warning: output rate is control rate, so cannot change inputs at audio rate\n");
}
SETCALC(AnalogOut_next_kk);
}
belaUGenInitOutput(unit);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
void DigitalIn_next_a(DigitalIn* unit, int inNumSamples) {
auto* context = unit->mWorld->mBelaContext;
int pinid = unit->mDigitalPin;
float* out = OUT(0);
for (unsigned int n = 0; n < inNumSamples; n++) {
out[n] = static_cast<float>(digitalRead(context, n, pinid));
}
}
void DigitalIn_next_k(DigitalIn* unit, int inNumSamples) {
auto* context = unit->mWorld->mBelaContext;
int pinid = unit->mDigitalPin;
OUT0(0) = static_cast<float>(digitalRead(context, 0, pinid));
}
void DigitalIn_Ctor(DigitalIn* unit) {
BelaContext* context = unit->mWorld->mBelaContext;
unit->mDigitalPin = static_cast<int>(IN0(0)); // digital in pin -- cannot change after construction
if ((unit->mDigitalPin < 0) || (unit->mDigitalPin >= context->digitalChannels)) {
rt_fprintf(stderr, "DigitalIn error: digital pin must be between %i and %i, it is %i\n", 0,
context->digitalChannels, unit->mDigitalPin);
belaUGenDisable(unit);
return;
}
pinMode(context, 0, unit->mDigitalPin, INPUT);
// set calculation method
if (unit->mCalcRate == calc_FullRate) { // ugen running at audio rate;
SETCALC(DigitalIn_next_a);
} else {
SETCALC(DigitalIn_next_k);
}
belaUGenInitOutput(unit);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
void DigitalOut_next_a(DigitalOut* unit, int inNumSamples) {
auto* context = unit->mWorld->mBelaContext;
int pinid = unit->mDigitalPin;
float* in = IN(1);
int lastOut = unit->mLastOut;
for (unsigned int n = 0; n < inNumSamples; n++) {
// read input
float newinput = in[n];
if (newinput > 0.5) {
if (lastOut == 0) {
lastOut = 1;
digitalWrite(context, n, pinid, 1);
}
} else if (lastOut == 1) {
lastOut = 0;
digitalWrite(context, n, pinid, 0);
}
}
unit->mLastOut = lastOut;
}
void DigitalOut_next_k(DigitalOut* unit, int inNumSamples) {
auto* context = unit->mWorld->mBelaContext;
int pinid = unit->mDigitalPin;
float in = IN0(1);
int lastOut = unit->mLastOut;
if (in > 0.5) {
if (lastOut == 0) {
lastOut = 1;
digitalWrite(context, 0, pinid, 1);
}
} else if (lastOut == 1) {
lastOut = 0;
digitalWrite(context, 0, pinid, 0);
}
unit->mLastOut = lastOut;
}
void DigitalOut_Ctor(DigitalOut* unit) {
BelaContext* context = unit->mWorld->mBelaContext;
unit->mDigitalPin = static_cast<int>(IN0(0)); // digital in pin -- cannot change after construction
unit->mLastOut = 0;
if ((unit->mDigitalPin < 0) || (unit->mDigitalPin >= context->digitalChannels)) {
rt_fprintf(stderr, "DigitalOut error: digital pin must be between %i and %i, it is %i\n", 0,
context->digitalChannels, unit->mDigitalPin);
belaUGenDisable(unit);
}
// initialize first buffer
pinMode(context, 0, unit->mDigitalPin, OUTPUT);
digitalWrite(context, 0, unit->mDigitalPin, unit->mLastOut);
if (unit->mCalcRate == calc_FullRate) { // ugen running at audio rate;
if (INRATE(1) == calc_FullRate) { // output changed at audio rate
SETCALC(DigitalOut_next_a);
} else { // not much reason to actually do audiorate output
rt_fprintf(stderr, "DigitalOut warning: inputs are control rate, so DigitalOut will run at control rate\n");
SETCALC(DigitalOut_next_k);
}
} else { // ugen at control rate
if (INRATE(1) == calc_FullRate) {
rt_fprintf(stderr,
"DigitalOut warning: UGen rate is control rate, so cannot change inputs at audio rate\n");
}
SETCALC(DigitalOut_next_k);
}
belaUGenInitOutput(unit);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// returns false if pin is out of range, so that _next functions should avoid using it
bool DigitalIO_updatePin(DigitalIO* unit, int newPin) {
BelaContext* context = unit->mWorld->mBelaContext;
return updatePin(context->digitalChannels, newPin, &unit->mDigitalPin, "DigitalIO");
}
static int parseDigitalValue(float value) { return value > 0.5; }
static int parseDigitalMode(float mode) { return mode < 0.5 ? INPUT : OUTPUT; }
void DigitalIO_next_universal(DigitalIO* unit, int inNumSamples) {
auto* context = unit->mWorld->mBelaContext;
const bool ugenAudioRate = (calc_FullRate == unit->mCalcRate);
const bool pinAudioRate = (calc_FullRate == INRATE(0));
const bool inputAudioRate = (calc_FullRate == INRATE(1));
const bool modeAudioRate = (calc_FullRate == INRATE(2));
unsigned int outsCount = ugenAudioRate ? inNumSamples : 1;
unsigned int pinsCount = pinAudioRate ? inNumSamples : 1;
unsigned int insCount = inputAudioRate ? inNumSamples : 1;
unsigned int modesCount = modeAudioRate ? inNumSamples : 1;
AccessBufferWriter outs(OUT(0), outsCount); // may be the same as pins
const AccessBufferReader pins(IN(0), pinsCount);
const AccessBufferReader ins(IN(1), insCount);
const AccessBufferReader modes(IN(2), modesCount);
bool lastDigIn = unit->mLastDigitalIn;
// with properly initialised AccessBuffers, we can use [n] below regardless
// of the K/A rate of each buffer
for (unsigned int n = 0; n < inNumSamples; ++n) {
unsigned int pin = static_cast<int>(pins[n]);
if (DigitalIO_updatePin(unit, pin)) {
int mode = parseDigitalMode(modes[n]);
if (1 == inNumSamples) {
// we are only ever going to go up to 1 (i.e.: processed at
// control rate). So fill up the rest of the buffer.
pinMode(context, 0, unit->mDigitalPin, mode);
} else {
pinModeOnce(context, n, unit->mDigitalPin, mode);
}
if (INPUT == mode) {
lastDigIn = digitalRead(context, n, unit->mDigitalPin);
} else {
bool digOut = parseDigitalValue(ins[n]);
if (1 == inNumSamples) {
// we are only ever going to go up to 1 (i.e.: processed at
// control rate). So fill up the rest of the buffer.
digitalWrite(context, 0, unit->mDigitalPin, digOut);
} else {
digitalWriteOnce(context, n, unit->mDigitalPin, digOut);
}
}
}
outs[n] = lastDigIn;
}
unit->mLastDigitalIn = lastDigIn;
}
void DigitalIO_Ctor(DigitalIO* unit) {
BelaContext* context = unit->mWorld->mBelaContext;
unit->mDigitalPin = 0;
unit->mLastDigitalIn = 0;
unit->mLastDigitalOut = 0;
SETCALC(DigitalIO_next_universal);
belaUGenInitOutput(unit);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
struct BelaScopeOut : public Unit {
unsigned int numScopeChannels;
unsigned int offset;
};
void BelaScopeOut_next(BelaScopeOut* unit, unsigned int numSamples) {
float* scopeBuffer = unit->mWorld->mBelaScope->buffer;
if (!scopeBuffer)
return;
unsigned int numChannels = unit->numScopeChannels;
unsigned int maxChannels = unit->mWorld->mBelaMaxScopeChannels;
unsigned int scopeBufferSamples = unit->mWorld->mBelaScope->bufferSamples;
float* inputPointers[numChannels];
// input 0: channelOffset
// inputs 1 to numInputs-1 : signal inputs
for (unsigned int ch = 0; ch < numChannels; ++ch)
inputPointers[ch] = IN(ch + 1); // skip IN(0)
for (unsigned int frame = unit->offset; frame < scopeBufferSamples; frame += maxChannels)
for (unsigned int ch = 0; ch < numChannels; ++ch)
scopeBuffer[frame + ch] += *inputPointers[ch]++;
unit->mWorld->mBelaScope->touched = true;
}
void BelaScopeOut_Ctor(BelaScopeOut* unit) {
BelaScope* scope = unit->mWorld->mBelaScope;
if (!scope || !scope->buffer) {
rt_fprintf(stderr, "BelaScopeOut error: Scope not initialized on server\n");
belaUGenDisable(unit);
return;
};
int offset = static_cast<int>(IN0(0));
unit->offset = static_cast<unsigned int>(offset < 0 ? 0 : offset);
uint32 maxScopeChannels = unit->mWorld->mBelaMaxScopeChannels;
uint32 numInputSignals = unit->mNumInputs - 1;
if (numInputSignals > maxScopeChannels - unit->offset) {
rt_fprintf(
stderr,
"BelaScopeOut warning: can't scope %i channels starting from %i, maxBelaScopeChannels is set to %i\n",
numInputSignals, offset, maxScopeChannels);
}
unit->numScopeChannels = sc_min(numInputSignals, maxScopeChannels - unit->offset);
if (unit->numScopeChannels <= 0) {
belaUGenDisable(unit);
} else {
BelaScopeOut_next(unit, 1);
SETCALC(BelaScopeOut_next);
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////
PluginLoad(BELA) {
ft = inTable;
DefineSimpleUnit(MultiplexAnalogIn);
DefineSimpleUnit(AnalogIn);
DefineSimpleUnit(AnalogOut);
DefineSimpleUnit(DigitalIn);
DefineSimpleUnit(DigitalOut);
DefineSimpleUnit(DigitalIO);
DefineSimpleUnit(BelaScopeOut);
}
|