1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
|
/*
Improved FFT and IFFT UGens for SuperCollider 3
Copyright (c) 2007-2008 Dan Stowell, incorporating code from
SuperCollider 3 Copyright (c) 2002 James McCartney.
All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "FFT_UGens.h"
// We include vDSP even if not using for FFT, since we want to use some vectorised add/mul tricks
#if defined(__APPLE__) && !defined(SC_IPHONE)
# include <Accelerate/Accelerate.h>
#endif
struct FFTBase : public Unit {
SndBuf* m_fftsndbuf;
float* m_fftbuf;
int m_pos, m_fullbufsize, m_audiosize; // "fullbufsize" includes any zero-padding, "audiosize" does not.
int m_log2n_full, m_log2n_audio;
uint32 m_fftbufnum;
scfft* m_scfft;
int m_hopsize, m_shuntsize; // These add up to m_audiosize
int m_wintype;
int m_numSamples;
};
struct FFT : public FFTBase {
float* m_inbuf;
};
struct IFFT : public FFTBase {
float* m_olabuf;
int m_numSamples;
};
struct FFTTrigger : public FFTBase {
int m_numPeriods, m_periodsRemain, m_polar;
};
//////////////////////////////////////////////////////////////////////////////////////////////////
extern "C" {
void FFT_Ctor(FFT* unit);
void FFT_ClearUnitOutputs(FFT* unit, int wrongNumSamples);
void FFT_next(FFT* unit, int inNumSamples);
void FFT_Dtor(FFT* unit);
void IFFT_Ctor(IFFT* unit);
void IFFT_next(IFFT* unit, int inNumSamples);
void IFFT_Dtor(IFFT* unit);
void FFTTrigger_Ctor(FFTTrigger* unit);
void FFTTrigger_next(FFTTrigger* unit, int inNumSamples);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
static int FFTBase_Ctor(FFTBase* unit, int frmsizinput) {
World* world = unit->mWorld;
uint32 bufnum = (uint32)ZIN0(0);
SndBuf* buf;
if (bufnum >= world->mNumSndBufs) {
int localBufNum = bufnum - world->mNumSndBufs;
Graph* parent = unit->mParent;
if (localBufNum <= parent->localMaxBufNum) {
buf = parent->mLocalSndBufs + localBufNum;
} else {
if (unit->mWorld->mVerbosity > -1) {
Print("FFTBase_Ctor error: invalid buffer number: %i.\n", bufnum);
}
return 0;
}
} else {
buf = world->mSndBufs + bufnum;
}
if (!buf->data) {
if (unit->mWorld->mVerbosity > -1) {
Print("FFTBase_Ctor error: Buffer %i not initialised.\n", bufnum);
}
return 0;
}
unit->m_fftsndbuf = buf;
unit->m_fftbufnum = bufnum;
unit->m_fullbufsize = buf->samples;
int framesize = (int)ZIN0(frmsizinput);
if (framesize < 1)
unit->m_audiosize = buf->samples;
else
unit->m_audiosize = sc_min(buf->samples, framesize);
unit->m_log2n_full = LOG2CEIL(unit->m_fullbufsize);
unit->m_log2n_audio = LOG2CEIL(unit->m_audiosize);
// Although FFTW allows non-power-of-two buffers (vDSP doesn't), this would complicate the windowing, so we don't
// allow it.
if (!ISPOWEROFTWO(unit->m_fullbufsize)) {
Print("FFTBase_Ctor error: buffer size (%i) not a power of two.\n", unit->m_fullbufsize);
return 0;
} else if (!ISPOWEROFTWO(unit->m_audiosize)) {
Print("FFTBase_Ctor error: audio frame size (%i) not a power of two.\n", unit->m_audiosize);
return 0;
} else if (unit->m_audiosize < SC_FFT_MINSIZE
|| (((int)(unit->m_audiosize / unit->mWorld->mFullRate.mBufLength)) * unit->mWorld->mFullRate.mBufLength
!= unit->m_audiosize)) {
Print("FFTBase_Ctor error: audio frame size (%i) not a multiple of the block size (%i).\n", unit->m_audiosize,
unit->mWorld->mFullRate.mBufLength);
return 0;
}
unit->m_pos = 0;
ZOUT0(0) = ZIN0(0);
return 1;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
void FFT_Ctor(FFT* unit) {
int winType = sc_clip((int)ZIN0(3), -1, 1); // wintype may be used by the base ctor
unit->m_wintype = winType;
// These zeroes are to prevent the dtor freeing things that don't exist:
unit->m_inbuf = nullptr;
unit->m_scfft = nullptr;
if (!FFTBase_Ctor(unit, 5)) {
SETCALC(FFT_ClearUnitOutputs);
return;
}
int audiosize = unit->m_audiosize * sizeof(float);
int hopsize = (int)(sc_max(sc_min(ZIN0(2), 1.f), 0.f) * unit->m_audiosize);
if (hopsize < unit->mWorld->mFullRate.mBufLength) {
Print("FFT_Ctor: hopsize smaller than SC's block size (%i) - automatically corrected.\n", hopsize,
unit->mWorld->mFullRate.mBufLength);
hopsize = unit->mWorld->mFullRate.mBufLength;
} else if (((int)(hopsize / unit->mWorld->mFullRate.mBufLength)) * unit->mWorld->mFullRate.mBufLength != hopsize) {
Print("FFT_Ctor: hopsize (%i) not an exact multiple of SC's block size (%i) - automatically corrected.\n",
hopsize, unit->mWorld->mFullRate.mBufLength);
hopsize = ((int)(hopsize / unit->mWorld->mFullRate.mBufLength)) * unit->mWorld->mFullRate.mBufLength;
}
unit->m_hopsize = hopsize;
unit->m_shuntsize = unit->m_audiosize - hopsize;
unit->m_inbuf = (float*)RTAlloc(unit->mWorld, audiosize);
ClearFFTUnitIfMemFailed(unit->m_inbuf);
SCWorld_Allocator alloc(ft, unit->mWorld);
unit->m_scfft = scfft_create(unit->m_fullbufsize, unit->m_audiosize, (SCFFT_WindowFunction)unit->m_wintype,
unit->m_inbuf, unit->m_fftsndbuf->data, kForward, alloc);
ClearFFTUnitIfMemFailed(unit->m_scfft);
memset(unit->m_inbuf, 0, audiosize);
// Print("FFT_Ctor: hopsize %i, shuntsize %i, bufsize %i, wintype %i, \n",
// unit->m_hopsize, unit->m_shuntsize, unit->m_bufsize, unit->m_wintype);
if (INRATE(1) == calc_FullRate) {
unit->m_numSamples = unit->mWorld->mFullRate.mBufLength;
} else {
unit->m_numSamples = 1;
}
SETCALC(FFT_next);
}
void FFT_Dtor(FFT* unit) {
SCWorld_Allocator alloc(ft, unit->mWorld);
if (unit->m_scfft)
scfft_destroy(unit->m_scfft, alloc);
if (unit->m_inbuf)
RTFree(unit->mWorld, unit->m_inbuf);
}
void FFT_next(FFT* unit, int wrongNumSamples) {
float* in = IN(1);
float* out = unit->m_inbuf + unit->m_pos + unit->m_shuntsize;
int numSamples = unit->m_numSamples;
// copy input
memcpy(out, in, numSamples * sizeof(float));
unit->m_pos += numSamples;
bool gate = ZIN0(4) > 0.f; // Buffer shunting continues, but no FFTing
if (unit->m_pos != unit->m_hopsize || !unit->m_fftsndbuf->data
|| unit->m_fftsndbuf->samples != unit->m_fullbufsize) {
if (unit->m_pos == unit->m_hopsize)
unit->m_pos = 0;
ZOUT0(0) = -1.f;
} else {
unit->m_pos = 0;
if (gate) {
scfft_dofft(unit->m_scfft);
unit->m_fftsndbuf->coord = coord_Complex;
ZOUT0(0) = unit->m_fftbufnum;
} else {
ZOUT0(0) = -1;
}
// Shunt input buf down
memmove(unit->m_inbuf, unit->m_inbuf + unit->m_hopsize, unit->m_shuntsize * sizeof(float));
}
}
/////////////////////////////////////////////////////////////////////////////////////////////
void IFFT_Ctor(IFFT* unit) {
int winType = sc_clip((int)ZIN0(1), -1, 1); // wintype may be used by the base ctor
unit->m_wintype = winType;
// These zeroes are to prevent the dtor freeing things that don't exist:
unit->m_olabuf = nullptr;
unit->m_scfft = nullptr;
if (!FFTBase_Ctor(unit, 2)) {
SETCALC(*ClearUnitOutputs);
return;
}
// This will hold the transformed and progressively overlap-added data ready for outputting.
unit->m_olabuf = (float*)RTAlloc(unit->mWorld, unit->m_audiosize * sizeof(float));
ClearUnitIfMemFailed(unit->m_olabuf);
memset(unit->m_olabuf, 0, unit->m_audiosize * sizeof(float));
SCWorld_Allocator alloc(ft, unit->mWorld);
unit->m_scfft = scfft_create(unit->m_fullbufsize, unit->m_audiosize, (SCFFT_WindowFunction)unit->m_wintype,
unit->m_fftsndbuf->data, unit->m_fftsndbuf->data, kBackward, alloc);
ClearUnitIfMemFailed(unit->m_scfft);
// "pos" will be reset to zero when each frame comes in. Until then, the following ensures silent output at first:
unit->m_pos = 0; // unit->m_audiosize;
if (unit->mCalcRate == calc_FullRate) {
unit->m_numSamples = unit->mWorld->mFullRate.mBufLength;
} else {
unit->m_numSamples = 1;
}
SETCALC(IFFT_next);
ClearUnitOutputs(unit, 1);
}
void IFFT_Dtor(IFFT* unit) {
if (unit->m_olabuf)
RTFree(unit->mWorld, unit->m_olabuf);
SCWorld_Allocator alloc(ft, unit->mWorld);
if (unit->m_scfft)
scfft_destroy(unit->m_scfft, alloc);
}
void IFFT_next(IFFT* unit, int wrongNumSamples) {
float* out = OUT(0); // NB not ZOUT0
// Load state from struct into local scope
int pos = unit->m_pos;
int audiosize = unit->m_audiosize;
int numSamples = unit->m_numSamples;
float* olabuf = unit->m_olabuf;
float fbufnum = ZIN0(0);
// Only run the IFFT if we're receiving a new block of input data - otherwise just output data already received
if (fbufnum >= 0.f) {
// Ensure it's in cartesian format, not polar
ToComplexApx(unit->m_fftsndbuf);
float* fftbuf = unit->m_fftsndbuf->data;
scfft_doifft(unit->m_scfft);
// Then shunt the "old" time-domain output down by one hop
int hopsamps = pos;
int shuntsamps = audiosize - hopsamps;
if (hopsamps
!= audiosize) // There's only copying to be done if the position isn't all the way to the end of the buffer
memmove(olabuf, olabuf + hopsamps, shuntsamps * sizeof(float));
// Then mix the "new" time-domain data in - adding at first, then just setting (copying) where the "old" is supposed to
// be zero.
#if defined(__APPLE__) && !defined(SC_IPHONE)
vDSP_vadd(olabuf, 1, fftbuf, 1, olabuf, 1, shuntsamps);
#else
// NB we re-use the "pos" variable temporarily here for write rather than read
for (pos = 0; pos < shuntsamps; ++pos) {
olabuf[pos] += fftbuf[pos];
}
#endif
memcpy(olabuf + shuntsamps, fftbuf + shuntsamps, (hopsamps) * sizeof(float));
// Move the pointer back to zero, which is where playback will next begin
pos = 0;
} // End of has-the-chain-fired
// Now we can output some stuff, as long as there is still data waiting to be output.
// If there is NOT data waiting to be output, we output zero. (Either irregular/negative-overlap
// FFT firing, or FFT has given up, or at very start of execution.)
if (pos >= audiosize)
ClearUnitOutputs(unit, numSamples);
else {
memcpy(out, olabuf + pos, numSamples * sizeof(float));
pos += numSamples;
}
unit->m_pos = pos;
}
/////////////////////////////////////////////////////////////////////////////////////////////
void FFTTrigger_Ctor(FFTTrigger* unit) {
World* world = unit->mWorld;
/*
uint32 bufnum = (uint32)IN0(0);
Print("FFTTrigger_Ctor: bufnum is %i\n", bufnum);
if (bufnum >= world->mNumSndBufs) bufnum = 0;
SndBuf *buf = world->mSndBufs + bufnum;
*/
uint32 bufnum = (uint32)IN0(0);
// Print("FFTTrigger_Ctor: bufnum is %i\n", bufnum);
SndBuf* buf;
if (bufnum >= world->mNumSndBufs) {
int localBufNum = bufnum - world->mNumSndBufs;
Graph* parent = unit->mParent;
if (localBufNum <= parent->localMaxBufNum) {
buf = parent->mLocalSndBufs + localBufNum;
} else {
bufnum = 0;
buf = world->mSndBufs + bufnum;
}
} else {
buf = world->mSndBufs + bufnum;
}
LOCK_SNDBUF(buf);
unit->m_fftsndbuf = buf;
unit->m_fftbufnum = bufnum;
unit->m_fullbufsize = buf->samples;
int numSamples = unit->mWorld->mFullRate.mBufLength;
float dataHopSize = IN0(1);
unit->m_numPeriods = unit->m_periodsRemain = (int)(((float)unit->m_fullbufsize * dataHopSize) / numSamples) - 1;
buf->coord = (IN0(2) == 1.f) ? coord_Polar : coord_Complex;
OUT0(0) = IN0(0);
SETCALC(FFTTrigger_next);
}
void FFTTrigger_next(FFTTrigger* unit, int inNumSamples) {
if (unit->m_periodsRemain > 0) {
ZOUT0(0) = -1.f;
unit->m_periodsRemain--;
} else {
ZOUT0(0) = unit->m_fftbufnum;
unit->m_pos = 0;
unit->m_periodsRemain = unit->m_numPeriods;
}
}
void initFFT(InterfaceTable* inTable) {
ft = inTable;
DefineDtorUnit(FFT);
DefineDtorUnit(IFFT);
DefineSimpleUnit(FFTTrigger);
}
|