1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
|
/*
SuperCollider real time audio synthesis system
Copyright (c) 2002 James McCartney. All rights reserved.
http://www.audiosynth.com
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
// Gendyn UGens implemented by Nick Collins
#include "SC_PlugIn.h"
static InterfaceTable* ft;
struct Gendy1 : public Unit // Iannis Xenakis/Marie-Helene Serra GENDYN simulation
{
double mPhase;
float mFreqMul, mAmp, mNextAmp, mSpeed, mDur;
int mMemorySize, mIndex;
float* mMemoryAmp; // could hard code as 12
float* mMemoryDur;
};
// following Hoffmann paper from CMJ- primary and secondary random walks
struct Gendy2 : public Unit {
double mPhase;
float mFreqMul, mAmp, mNextAmp, mSpeed, mDur;
int mMemorySize, mIndex;
float* mMemoryAmp;
float* mMemoryAmpStep;
float* mMemoryDur;
float* mMemoryDurStep;
};
// Random walks as Gendy1 but works out all breakpoints per cycle and normalises time intervals to desired frequency
struct Gendy3 : public Unit {
double mPhase, mNextPhase, mLastPhase;
float mSpeed, mFreqMul;
float mAmp, mNextAmp, mInterpMult;
int mMemorySize, mIndex;
float* mMemoryAmp;
float* mMemoryDur;
double* mPhaseList;
float* mAmpList;
};
extern "C" {
void Gendy1_next_k(Gendy1* unit, int inNumSamples);
void Gendy1_Ctor(Gendy1* unit);
void Gendy1_Dtor(Gendy1* unit);
void Gendy2_next_k(Gendy2* unit, int inNumSamples);
void Gendy2_Ctor(Gendy2* unit);
void Gendy2_Dtor(Gendy2* unit);
void Gendy3_next_k(Gendy3* unit, int inNumSamples);
void Gendy3_Ctor(Gendy3* unit);
void Gendy3_Dtor(Gendy3* unit);
}
void Gendy1_Ctor(Gendy1* unit) {
SETCALC(Gendy1_next_k);
unit->mFreqMul = unit->mRate->mSampleDur;
unit->mPhase = 1.0; // should immediately decide on new target
unit->mAmp = 0.0f;
unit->mNextAmp = 0.0f;
unit->mSpeed = 100.f;
unit->mMemorySize = (int)ZIN0(8); // default is 12
// printf("memsize %d %f", unit->mMemorySize, ZIN0(8));
if (unit->mMemorySize < 1)
unit->mMemorySize = 1;
unit->mIndex = 0;
unit->mMemoryAmp = (float*)RTAlloc(unit->mWorld, unit->mMemorySize * sizeof(float));
unit->mMemoryDur = (float*)RTAlloc(unit->mWorld, unit->mMemorySize * sizeof(float));
ClearUnitIfMemFailed(unit->mMemoryAmp && unit->mMemoryDur);
RGen& rgen = *unit->mParent->mRGen;
// initialise to zeroes and separations
for (int i = 0; i < unit->mMemorySize; ++i) {
unit->mMemoryAmp[i] = 2 * rgen.frand() - 1.0f;
unit->mMemoryDur[i] = rgen.frand();
}
// compute one sample of output to avoid sending garbage memory downstream to other Ctor functions
// first sample of the _next output will be the current amplitude (which is 0)
OUT0(0) = 0.0f;
}
void Gendy1_Dtor(Gendy1* unit) {
RTFree(unit->mWorld, unit->mMemoryAmp);
RTFree(unit->mWorld, unit->mMemoryDur);
}
// called once per period so OK to work out constants in here
static float Gendyn_distribution(int which, float a, float f) {
float temp, c;
if (a > 1.f)
a = 1.f; // a must be in range 0 to 1
if (a < 0.0001f)
a = 0.0001f; // for safety with some distributions, don't want divide by zero errors
switch (which) {
case 0: // LINEAR
// linear
break;
case 1: // CAUCHY
// X has a*tan((z-0.5)*pi)
// I went back to first principles of the Cauchy distribution and re-integrated with a
// normalisation constant
// choice of 10 here is such that f=0.95 gives about 0.35 for temp, could go with 2 to make it finer
c = atan(10 * a); // PERHAPS CHANGE TO a=1/a;
// incorrect- missed out divisor of pi in norm temp= a*tan(c*(2*pi*f - 1));
temp = (1.f / a) * tan(c * (2.f * f - 1.f)); // Cauchy distribution, C is precalculated
// printf("cauchy f %f c %f temp %f out %f \n",f, c, temp, temp/10);
return temp * 0.1f; //(temp+100)/200;
case 2: // LOGIST (ic)
// X has -(log((1-z)/z)+b)/a which is not very usable as is
c = 0.5f + (0.499f * a); // calculate normalisation constant
c = log((1.f - c) / c);
// remap into range of valid inputs to avoid infinities in the log
// f= ((f-0.5)*0.499*a)+0.5;
f = ((f - 0.5f) * 0.998f * a) + 0.5f; //[0,1]->[0.001,0.999]; squashed around midpoint 0.5 by a
// Xenakis calls this the LOGIST map, it's from the range [0,1] to [inf,0] where 0.5->1
// than take natural log. to avoid infinities in practise I take [0,1] -> [0.001,0.999]->[6.9,-6.9]
// an interesting property is that 0.5-e is the reciprocal of 0.5+e under (1-f)/f
// and hence the logs are the negative of each other
temp = log((1.f - f) / f) / c; // n range [-1,1]
// X also had two constants in his- I don't bother
// printf("logist f %f temp %f\n", f, temp);
return temp; // a*0.5*(temp+1.0); //to [0,1]
case 3: // HYPERBCOS
// X original a*log(tan(z*pi/2)) which is [0,1]->[0,pi/2]->[0,inf]->[-inf,inf]
// unmanageable in this pure form
c = tan(1.5692255f * a); // tan(0.999*a*pi*0.5); //[0, 636.6] maximum range
temp = tan(1.5692255f * a * f) / c; //[0,1]->[0,1]
temp = log(temp * 0.999f + 0.001f) * (-0.1447648f); // multiplier same as /(-6.9077553); //[0,1]->[0,1]
// printf("hyperbcos f %f c %f temp %f\n", f, c, temp);
return 2.f * temp - 1.0f;
case 4: // ARCSINE
// X original a/2*(1-sin((0.5-z)*pi)) aha almost a better behaved one though [0,1]->[2,0]->[a,0]
c = sin(1.5707963f * a); // sin(pi*0.5*a); //a as scaling factor of domain of sine input to use
temp = sin(pi_f * (f - 0.5f) * a) / c; //[-1,1] which is what I need
// printf("arcsine f %f c %f temp %f\n", f, c, temp);
return temp;
case 5: // EXPON
// X original -(log(1-z))/a [0,1]-> [1,0]-> [0,-inf]->[0,inf]
c = log(1.f - (0.999f * a));
temp = log(1.f - (f * 0.999f * a)) / c;
// printf("expon f %f c %f temp %f\n", f, c, temp);
return 2.f * temp - 1.f;
case 6: // SINUS
// X original a*sin(smp * 2*pi/44100 * b) ie depends on a second oscillator's value-
// hmmm, plug this in as a I guess, will automatically accept control rate inputs then!
return 2.f * a - 1.f;
default:
break;
}
return 2.f * f - 1.f;
}
void Gendy1_next_k(Gendy1* unit, int inNumSamples) {
float* out = ZOUT(0);
// distribution choices for amp and dur and constants of distribution
int whichamp = (int)ZIN0(0);
int whichdur = (int)ZIN0(1);
float aamp = ZIN0(2);
float adur = ZIN0(3);
float minfreq = ZIN0(4);
float maxfreq = ZIN0(5);
float scaleamp = ZIN0(6);
float scaledur = ZIN0(7);
float rate = unit->mDur;
// phase gives proportion for linear interpolation automatically
double phase = unit->mPhase;
float amp = unit->mAmp;
float nextamp = unit->mNextAmp;
float speed = unit->mSpeed;
RGen& rgen = *unit->mParent->mRGen;
// linear distribution 0.0 to 1.0 using rgen.frand()
LOOP1(
inNumSamples, float z;
if (phase >= 1.0) {
phase -= 1.0;
int index = unit->mIndex;
int num = (int)(ZIN0(9)); //(unit->mMemorySize);(((int)ZIN0(9))%(unit->mMemorySize))+1;
if ((num > (unit->mMemorySize)) || (num < 1))
num = unit->mMemorySize;
// new code for indexing
index = (index + 1) % num;
amp = nextamp;
unit->mIndex = index;
// Gendy dist gives value [-1,1], then use scaleamp
// first term was amp before, now must check new memory slot
nextamp = (unit->mMemoryAmp[index]) + (scaleamp * Gendyn_distribution(whichamp, aamp, rgen.frand()));
// mirroring for bounds- safe version
if (nextamp > 1.0f || nextamp < -1.0f) {
// printf("mirroring nextamp %f ", nextamp);
// to force mirroring to be sensible
if (nextamp < 0.0f)
nextamp = nextamp + 4.f;
nextamp = fmod(nextamp, 4.f);
// printf("fmod %f ", nextamp);
if (nextamp > 1.0f && nextamp < 3.f)
nextamp = 2.f - nextamp;
else if (nextamp > 1.0f)
nextamp = nextamp - 4.f;
// printf("mirrorednextamp %f \n", nextamp);
};
unit->mMemoryAmp[index] = nextamp;
// Gendy dist gives value [-1,1]
rate = (unit->mMemoryDur[index]) + (scaledur * Gendyn_distribution(whichdur, adur, rgen.frand()));
if (rate > 1.0f || rate < 0.0f) {
if (rate < 0.0)
rate = rate + 2.f;
rate = fmod(rate, 2.0f);
rate = 2.f - rate;
}
unit->mMemoryDur[index] = rate;
// printf("nextamp %f rate %f \n", nextamp, rate);
// define range of speeds (say between 20 and 1000 Hz)
// can have bounds as fourth and fifth inputs
speed = (minfreq + ((maxfreq - minfreq) * rate)) * (unit->mFreqMul);
// if there are 12 control points in memory, that is 12 per cycle
// the speed is multiplied by 12
//(I don't store this because updating rates must remain in range [0,1]
speed *= num;
}
// linear interpolation could be changed
z = ((1.0 - phase) * amp) + (phase * nextamp);
phase += speed; ZXP(out) = z;);
unit->mPhase = phase;
unit->mAmp = amp;
unit->mNextAmp = nextamp;
unit->mSpeed = speed;
unit->mDur = rate;
}
void Gendy2_Ctor(Gendy2* unit) {
SETCALC(Gendy2_next_k);
unit->mFreqMul = unit->mRate->mSampleDur;
unit->mPhase = 1.0; // should immediately decide on new target
unit->mAmp = 0.0f;
unit->mNextAmp = 0.0f;
unit->mSpeed = 100.f;
unit->mMemorySize = (int)ZIN0(8); // default is 12
// printf("memsize %d %f", unit->mMemorySize, ZIN0(8));
if (unit->mMemorySize < 1)
unit->mMemorySize = 1;
unit->mIndex = 0;
unit->mMemoryAmp = (float*)RTAlloc(unit->mWorld, unit->mMemorySize * sizeof(float));
unit->mMemoryDur = (float*)RTAlloc(unit->mWorld, unit->mMemorySize * sizeof(float));
unit->mMemoryAmpStep = (float*)RTAlloc(unit->mWorld, unit->mMemorySize * sizeof(float));
unit->mMemoryDurStep = (float*)RTAlloc(unit->mWorld, unit->mMemorySize * sizeof(float));
ClearUnitIfMemFailed(unit->mMemoryAmp && unit->mMemoryDur && unit->mMemoryAmpStep && unit->mMemoryDurStep);
RGen& rgen = *unit->mParent->mRGen;
// initialise to zeroes and separations
for (int i = 0; i < unit->mMemorySize; ++i) {
unit->mMemoryAmp[i] = 2 * rgen.frand() - 1.0f;
unit->mMemoryDur[i] = rgen.frand();
unit->mMemoryAmpStep[i] = 2 * rgen.frand() - 1.0f;
unit->mMemoryDurStep[i] = 2 * rgen.frand() - 1.0f;
}
// compute one sample of output to avoid sending garbage memory downstream to other Ctor functions
// first sample of the _next output will be the current amplitude (which is 0)
OUT0(0) = 0.0f;
}
void Gendy2_Dtor(Gendy2* unit) {
RTFree(unit->mWorld, unit->mMemoryAmp);
RTFree(unit->mWorld, unit->mMemoryDur);
RTFree(unit->mWorld, unit->mMemoryAmpStep);
RTFree(unit->mWorld, unit->mMemoryDurStep);
}
static float Gendyn_mirroring(float lower, float upper, float in) {
// mirroring for bounds- safe version
if (in > upper || in < lower) {
float range = (upper - lower);
if (in < lower)
in = (2.0f * upper - lower) - in;
in = fmod(in - upper, 2.0f * range);
if (in < range)
in = upper - in;
else
in = in - (range);
}
return in;
}
void Gendy2_next_k(Gendy2* unit, int inNumSamples) {
float* out = ZOUT(0);
// distribution choices for amp and dur and constants of distribution
int whichamp = (int)ZIN0(0);
int whichdur = (int)ZIN0(1);
float aamp = ZIN0(2);
float adur = ZIN0(3);
float minfreq = ZIN0(4);
float maxfreq = ZIN0(5);
float scaleamp = ZIN0(6);
float scaledur = ZIN0(7);
float rate = unit->mDur;
// phase gives proportion for linear interpolation automatically
double phase = unit->mPhase;
float amp = unit->mAmp;
float nextamp = unit->mNextAmp;
float speed = unit->mSpeed;
RGen& rgen = *unit->mParent->mRGen;
LOOP1(
inNumSamples, float z;
if (phase >= 1.0) {
phase -= 1.0;
int index = unit->mIndex;
int num = (int)(ZIN0(9)); //(unit->mMemorySize);(((int)ZIN0(9))%(unit->mMemorySize))+1;
if ((num > (unit->mMemorySize)) || (num < 1))
num = unit->mMemorySize;
// new code for indexing
index = (index + 1) % num;
// using last amp value as seed
// random values made using a lehmer number generator xenakis style
float a = ZIN0(10);
float c = ZIN0(11);
float lehmerxen = fmod(((amp)*a) + c, 1.0f);
// printf("lehmer %f \n", lehmerxen);
amp = nextamp;
unit->mIndex = index;
// Gendy dist gives value [-1,1], then use scaleamp
// first term was amp before, now must check new memory slot
float ampstep = (unit->mMemoryAmpStep[index]) + Gendyn_distribution(whichamp, aamp, fabs(lehmerxen));
ampstep = Gendyn_mirroring(-1.0f, 1.0f, ampstep);
unit->mMemoryAmpStep[index] = ampstep;
nextamp = (unit->mMemoryAmp[index]) + (scaleamp * ampstep);
nextamp = Gendyn_mirroring(-1.0f, 1.0f, nextamp);
unit->mMemoryAmp[index] = nextamp;
float durstep = (unit->mMemoryDurStep[index]) + Gendyn_distribution(whichdur, adur, rgen.frand());
durstep = Gendyn_mirroring(-1.0f, 1.0f, durstep);
unit->mMemoryDurStep[index] = durstep;
rate = (unit->mMemoryDur[index]) + (scaledur * durstep);
rate = Gendyn_mirroring(0.0f, 1.0f, rate);
unit->mMemoryDur[index] = rate;
// printf("nextamp %f rate %f \n", nextamp, rate);
// define range of speeds (say between 20 and 1000 Hz)
// can have bounds as fourth and fifth inputs
speed = (minfreq + ((maxfreq - minfreq) * rate)) * (unit->mFreqMul);
// if there are 12 control points in memory, that is 12 per cycle
// the speed is multiplied by 12
//(I don't store this because updating rates must remain in range [0,1]
speed *= num;
}
// linear interpolation could be changed
z = ((1.0 - phase) * amp) + (phase * nextamp);
phase += speed; ZXP(out) = z;);
unit->mPhase = phase;
unit->mAmp = amp;
unit->mNextAmp = nextamp;
unit->mSpeed = speed;
unit->mDur = rate;
}
void Gendy3_Ctor(Gendy3* unit) {
SETCALC(Gendy3_next_k);
unit->mFreqMul = unit->mRate->mSampleDur;
unit->mPhase = 1.0; // should immediately decide on new target
unit->mAmp = 0.0f;
unit->mNextAmp = 0.0f;
unit->mNextPhase = 0.0;
unit->mLastPhase = 0.0;
unit->mInterpMult = 1.0f;
unit->mSpeed = 100.f;
unit->mMemorySize = (int)ZIN0(7);
if (unit->mMemorySize < 1)
unit->mMemorySize = 1;
unit->mIndex = 0;
unit->mMemoryAmp = (float*)RTAlloc(unit->mWorld, unit->mMemorySize * sizeof(float));
unit->mMemoryDur = (float*)RTAlloc(unit->mWorld, unit->mMemorySize * sizeof(float));
// one more in amp list for guard (wrap) element
unit->mAmpList = (float*)RTAlloc(unit->mWorld, (unit->mMemorySize + 1) * sizeof(float));
unit->mPhaseList = (double*)RTAlloc(unit->mWorld, (unit->mMemorySize + 1) * sizeof(double));
ClearUnitIfMemFailed(unit->mMemoryAmp && unit->mMemoryDur && unit->mAmpList && unit->mPhaseList);
RGen& rgen = *unit->mParent->mRGen;
// initialise to zeroes and separations
for (int i = 0; i < unit->mMemorySize; ++i) {
unit->mMemoryAmp[i] = 2 * rgen.frand() - 1.0f;
unit->mMemoryDur[i] = rgen.frand();
unit->mAmpList[i] = 2 * rgen.frand() - 1.0f;
unit->mPhaseList[i] = 1.0; // will be intialised immediately
}
unit->mMemoryAmp[0] = 0.0f; // always zeroed first BP
// compute one sample of output to avoid sending garbage memory downstream to other Ctor functions
// first sample of the _next output will be the current amplitude (which is 0)
OUT0(0) = 0.0f;
}
void Gendy3_Dtor(Gendy3* unit) {
RTFree(unit->mWorld, unit->mMemoryAmp);
RTFree(unit->mWorld, unit->mMemoryDur);
RTFree(unit->mWorld, unit->mAmpList);
RTFree(unit->mWorld, unit->mPhaseList);
}
void Gendy3_next_k(Gendy3* unit, int inNumSamples) {
float* out = ZOUT(0);
// distribution choices for amp and dur and constants of distribution
int whichamp = (int)ZIN0(0);
int whichdur = (int)ZIN0(1);
float aamp = ZIN0(2);
float adur = ZIN0(3);
float freq = ZIN0(4);
float scaleamp = ZIN0(5);
float scaledur = ZIN0(6);
double phase = unit->mPhase;
float amp = unit->mAmp;
float nextamp = unit->mNextAmp;
float speed = unit->mSpeed;
int index = unit->mIndex;
int interpmult = (int)unit->mInterpMult;
double lastphase = unit->mLastPhase;
double nextphase = unit->mNextPhase;
RGen& rgen = *unit->mParent->mRGen;
float* amplist = unit->mAmpList;
double* phaselist = unit->mPhaseList;
LOOP1(
inNumSamples,
float z;
if (phase >= 1.) { // calculate all targets for new period
phase -= 1.;
int num = (int)(ZIN0(8));
if ((num > (unit->mMemorySize)) || (num < 1))
num = unit->mMemorySize;
float dursum = 0.0f;
float* memoryamp = unit->mMemoryAmp;
float* memorydur = unit->mMemoryDur;
for (int j = 0; j < num; ++j) {
if (j > 0) { // first BP always stays at 0
float amp = (memoryamp[j]) + (scaleamp * Gendyn_distribution(whichamp, aamp, rgen.frand()));
amp = Gendyn_mirroring(-1.0f, 1.0f, amp);
memoryamp[j] = amp;
}
float dur = (memorydur[j]) + (scaledur * Gendyn_distribution(whichdur, adur, rgen.frand()));
dur = Gendyn_mirroring(0.01f, 1.0f, dur); // will get normalised in a moment, don't allow zeroes
memorydur[j] = dur;
dursum += dur;
}
// normalising constant
dursum = 1.f / dursum;
int active = 0;
// phase duration of a sample
float minphase = unit->mFreqMul;
speed = freq * minphase;
// normalise and discard any too short (even first)
for (int j = 0; j < num; ++j) {
float dur = memorydur[j];
dur *= dursum;
if (dur >= minphase) {
amplist[active] = memoryamp[j];
phaselist[active] = dur;
++active;
}
}
// add a zero on the end at active
amplist[active] = 0.0f; // guard element
phaselist[active] = 2.0; // safety element
// lastphase=0.0;
// nextphase= phaselist[0];
// amp=amplist[0];
// nextamp=amplist[1];
// index=0;
// unit->mIndex=index;
//
// setup to trigger next block
nextphase = 0.0;
nextamp = amplist[0];
index = -1;
}
if (phase >= nextphase) { // are we into a new region?
// new code for indexing
++index; //=index+1; //%num;
amp = nextamp;
unit->mIndex = index;
lastphase = nextphase;
nextphase = lastphase + phaselist[index];
nextamp = amplist[index + 1];
interpmult = (int)(1.0 / (nextphase - lastphase));
}
float interp = (phase - lastphase) * interpmult;
// linear interpolation could be changed
z = ((1.0f - interp) * amp) + (interp * nextamp);
phase += speed; ZXP(out) = z;);
unit->mPhase = phase;
unit->mSpeed = speed;
unit->mInterpMult = interpmult;
unit->mAmp = amp;
unit->mNextAmp = nextamp;
unit->mLastPhase = lastphase;
unit->mNextPhase = nextphase;
}
PluginLoad(Gendyn) {
ft = inTable;
DefineDtorUnit(Gendy1);
DefineDtorUnit(Gendy2);
DefineDtorUnit(Gendy3);
}
|