File: UnpackFFTUGens.cpp

package info (click to toggle)
supercollider 1%3A3.13.0%2Brepack-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 80,292 kB
  • sloc: cpp: 476,363; lisp: 84,680; ansic: 77,685; sh: 25,509; python: 7,909; makefile: 3,440; perl: 1,964; javascript: 974; xml: 826; java: 677; yacc: 314; lex: 175; objc: 152; ruby: 136
file content (301 lines) | stat: -rw-r--r-- 12,471 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
/*

"Unpack FFT" UGens for SuperCollider 3.
Copyright (c) 2007 Dan Stowell. All rights reserved.

(Written during the SC Symposium 2007! Thanks to all whose conversation fed into this.)


    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301  USA

*/

#include "SC_PlugIn.h"
#include "SCComplex.h"
#include "FFT_UGens.h"

struct Unpack1FFT : Unit {
    int bufsize;
    int latestMomentProcessed; // To avoid processing a given FFT frame more than once

    int binindex;

    bool wantmag; // yes for mag, no for phase
    float outval;

    // int numOldSkipped; // for debug
};

struct PackFFT : Unit {
    int bufsize, numinvals, frombin, tobin;
    bool zeroothers;
};

//////////////////////////////////////////////////////////////////////////////////////////////////

extern "C" {
void Unpack1FFT_Ctor(Unpack1FFT* unit);
void Unpack1FFT_next_dc(Unpack1FFT* unit, int inNumSamples);
void Unpack1FFT_next_nyq(Unpack1FFT* unit, int inNumSamples);
void Unpack1FFT_next_mag(Unpack1FFT* unit, int inNumSamples);
void Unpack1FFT_next_phase(Unpack1FFT* unit, int inNumSamples);

void PackFFT_Ctor(PackFFT* unit);
void PackFFT_Dtor(PackFFT* unit);
void PackFFT_next(PackFFT* unit, int inNumSamples);
}

InterfaceTable* ft;

////////////////////////////////////////////////////////////////////////////////////////////////////////


void Unpack1FFT_Ctor(Unpack1FFT* unit) {
    unit->bufsize = (int)ZIN0(1);
    unit->latestMomentProcessed = -1;
    // unit->numOldSkipped = 0;

    unit->outval = 0.f;

    unit->binindex = (int)ZIN0(2);

    if (ZIN0(3) == 0.f) {
        // Mags
        if (unit->binindex == 0) {
            SETCALC(Unpack1FFT_next_dc);
        } else if (unit->binindex == unit->bufsize >> 1) {
            SETCALC(Unpack1FFT_next_nyq);
        } else {
            SETCALC(Unpack1FFT_next_mag);
        }
    } else {
        // Phases
        if (unit->binindex == 0) {
            SETCALC(*ClearUnitOutputs);
        } else if (unit->binindex == unit->bufsize >> 1) {
            SETCALC(*ClearUnitOutputs);
        } else {
            SETCALC(Unpack1FFT_next_phase);
        }
    }

    ZOUT0(0) = unit->outval;
}


#define UNPACK1FFT_NEXT_COMMON                                                                                         \
    float fbufnum = ZIN0(0);                                                                                           \
    if (fbufnum < 0.f) {                                                                                               \
        if (unit->mWorld->mVerbosity > -1) {                                                                           \
            Print("Unpack1FFT_next: warning, fbufnum < 0\n");                                                          \
        }                                                                                                              \
        ZOUT0(0) = unit->outval;                                                                                       \
        return;                                                                                                        \
    }                                                                                                                  \
    uint32 ibufnum = (uint32)fbufnum;                                                                                  \
    World* world = unit->mWorld;                                                                                       \
    SndBuf* buf;                                                                                                       \
    if (ibufnum >= world->mNumSndBufs) {                                                                               \
        int localBufNum = ibufnum - world->mNumSndBufs;                                                                \
        Graph* parent = unit->mParent;                                                                                 \
        if (localBufNum <= parent->localBufNum) {                                                                      \
            buf = parent->mLocalSndBufs + localBufNum;                                                                 \
        } else {                                                                                                       \
            buf = world->mSndBufs;                                                                                     \
            if (unit->mWorld->mVerbosity > -1) {                                                                       \
                Print("Unpack1FFT_next: warning, bufnum too large: i%\n", ibufnum);                                    \
            }                                                                                                          \
        }                                                                                                              \
    } else {                                                                                                           \
        buf = world->mSndBufs + ibufnum;                                                                               \
    }                                                                                                                  \
    int binindex __attribute__((__unused__)) = unit->binindex;                                                         \
    LOCK_SNDBUF(buf);                                                                                                  \
    SCComplexBuf* p = ToComplexApx(buf);


void Unpack1FFT_next_mag(Unpack1FFT* unit, int inNumSamples) {
    if (unit->latestMomentProcessed != unit->mWorld->mBufCounter) {
        UNPACK1FFT_NEXT_COMMON

        unit->outval = hypotf(p->bin[binindex - 1].real, p->bin[binindex - 1].imag);

        unit->latestMomentProcessed = unit->mWorld->mBufCounter; // So we won't copy it again, not this frame anyway
        // unit->numOldSkipped = 0;
        //}else{
        // Print("skipold{%i,%i}", unit->mWorld->mBufCounter, 	++unit->numOldSkipped);
        // Print("Calculation previously done - skipping. unit->mWorld->mBufCounter = %i\n", unit->mWorld->mBufCounter);
    }

    ZOUT0(0) = unit->outval;
}

void Unpack1FFT_next_phase(Unpack1FFT* unit, int inNumSamples) {
    if (unit->latestMomentProcessed != unit->mWorld->mBufCounter) {
        UNPACK1FFT_NEXT_COMMON

        unit->outval = atan2(p->bin[binindex - 1].imag, p->bin[binindex - 1].real);

        unit->latestMomentProcessed = unit->mWorld->mBufCounter; // So we won't copy it again, not this frame anyway
        // unit->numOldSkipped = 0;
        //}else{
        // Print("skipold{%i,%i}", unit->mWorld->mBufCounter, 	++unit->numOldSkipped);
        // Print("Calculation previously done - skipping. unit->mWorld->mBufCounter = %i\n", unit->mWorld->mBufCounter);
    }

    ZOUT0(0) = unit->outval;
}

void Unpack1FFT_next_dc(Unpack1FFT* unit, int inNumSamples) {
    if (unit->latestMomentProcessed != unit->mWorld->mBufCounter) {
        UNPACK1FFT_NEXT_COMMON

        unit->outval = p->dc;

        unit->latestMomentProcessed = unit->mWorld->mBufCounter; // So we won't copy it again, not this frame anyway
        // unit->numOldSkipped = 0;
        //}else{
        // Print("skipold{%i,%i}", unit->mWorld->mBufCounter, 	++unit->numOldSkipped);
        // Print("Calculation previously done - skipping. unit->mWorld->mBufCounter = %i\n", unit->mWorld->mBufCounter);
    }

    ZOUT0(0) = unit->outval;
}

void Unpack1FFT_next_nyq(Unpack1FFT* unit, int inNumSamples) {
    if (unit->latestMomentProcessed != unit->mWorld->mBufCounter) {
        UNPACK1FFT_NEXT_COMMON

        unit->outval = p->nyq;

        unit->latestMomentProcessed = unit->mWorld->mBufCounter; // So we won't copy it again, not this frame anyway
        // unit->numOldSkipped = 0;
        //}else{
        // Print("skipold{%i,%i}", unit->mWorld->mBufCounter, 	++unit->numOldSkipped);
        // Print("Calculation previously done - skipping. unit->mWorld->mBufCounter = %i\n", unit->mWorld->mBufCounter);
    }

    ZOUT0(0) = unit->outval;
}

////////////////////////////////////////////////////////////////////////////////////////////////////////


void PackFFT_Ctor(PackFFT* unit) {
    SETCALC(PackFFT_next);

    unit->bufsize = (int)ZIN0(1);
    unit->frombin = (int)ZIN0(2);
    unit->tobin = (int)ZIN0(3);
    unit->zeroothers = ZIN0(4) > 0;
    unit->numinvals = (int)ZIN0(5);

    //	Print("PackFFT_Ctor: Passing chain through, val %g\n", ZIN0(0));
    ZOUT0(0) = ZIN0(0); // Required: allows the buffer index to fall through nicely to the IFFT
}

#define PACKFFT_INPUTSOFFSET 6

void PackFFT_next(PackFFT* unit, int inNumSamples) {
    /////////////////// cf PV_GET_BUF
    float fbufnum = ZIN0(0);
    if (fbufnum < 0.f) {
        ZOUT0(0) = -1.f;
        return;
    }
    uint32 ibufnum = (uint32)fbufnum;
    World* world = unit->mWorld;
    SndBuf* buf;
    if (ibufnum >= world->mNumSndBufs) {
        int localBufNum = ibufnum - world->mNumSndBufs;
        Graph* parent = unit->mParent;
        if (localBufNum <= parent->localBufNum) {
            buf = parent->mLocalSndBufs + localBufNum;
        } else {
            buf = world->mSndBufs;
        }
    } else {
        buf = world->mSndBufs + ibufnum;
    }
    LOCK_SNDBUF(buf);

    int numbins = (buf->samples - 2) >> 1;
    /////////////////// cf PV_GET_BUF

    // RM	Print("PackFFT_next: fbufnum = %g\n", fbufnum);

    int numinvals = unit->numinvals;

    SCComplexBuf* p = ToComplexApx(buf);

    int frombin = unit->frombin;
    int tobin = unit->tobin;
    int zeroothers = unit->zeroothers;


    // Load data from inputs into "p"

    if (frombin == 0) {
        p->dc = DEMANDINPUT(PACKFFT_INPUTSOFFSET);
    } else if (zeroothers) {
        p->dc = 0.f;
    }
    // Print("New DC is %g\n", p->dc);

    if (tobin == numbins + 1) {
        // Print("PackFFT: Fetching nyquist from input #%i\n", (PACKFFT_INPUTSOFFSET + numinvals - 2 - frombin -
        // frombin));
        p->nyq = DEMANDINPUT(PACKFFT_INPUTSOFFSET + numinvals - 2 - frombin - frombin);
    } else if (zeroothers) {
        p->nyq = 0.f;
    }
    // Print("New nyq (input #%i) is %g\n", numinvals, p->nyq);

    // real, imag = (mag * cos(phase), mag * sin(phase))
    float mag, phase;
    int startat = frombin == 0 ? 0 : frombin - 1;
    int endbefore = sc_min(numbins, tobin);
    for (int i = startat; i < endbefore; i++) {
        // Print("PackFFT: Fetching mag from input #%i\n", (i + i + PACKFFT_INPUTSOFFSET + 2 - frombin - frombin));
        mag = DEMANDINPUT(i + i + PACKFFT_INPUTSOFFSET + 2 - frombin - frombin);
        phase = DEMANDINPUT(i + i + PACKFFT_INPUTSOFFSET + 3 - frombin - frombin);
        p->bin[i].real = mag * cos(phase);
        p->bin[i].imag = mag * sin(phase);
    }
    // Print("New bin 7 is %g,%g\n", p->bin[7].real, p->bin[7].imag);

    if (zeroothers) {
        // Iterate through the ones we didn't fill in, wiping the magnitude
        for (int i = 0; i < startat; i++)
            p->bin[i].real = p->bin[i].imag = 0.f;
        for (int i = endbefore; i < numbins; i++)
            p->bin[i].real = p->bin[i].imag = 0.f;
    }

    ZOUT0(0) = fbufnum;
    // Print("PackFFT: fbufnum=%g, ibufnum=%i, numinvals=%i, frombin=%i, tobin=%i, zeroothers=%i\n",
    //				fbufnum, ibufnum, numinvals, frombin, tobin, zeroothers);
    // Print("PackFFT: p->bin[4].real=%g, p->bin[4].imag=%g, p->bin[5].real=%g, p->bin[5].imag=%g\n",
    //				p->bin[4].real, p->bin[4].imag, p->bin[5].real, p->bin[5].imag);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////


PluginLoad(UnpackFFTUGens) {
    ft = inTable;

    DefineSimpleUnit(Unpack1FFT);
    DefineSimpleUnit(PackFFT);
}