File: SC_InlineUnaryOp.h

package info (click to toggle)
supercollider 1%3A3.13.0%2Brepack-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 80,296 kB
  • sloc: cpp: 476,363; lisp: 84,680; ansic: 77,685; sh: 25,509; python: 7,909; makefile: 3,440; perl: 1,964; javascript: 974; xml: 826; java: 677; yacc: 314; lex: 175; objc: 152; ruby: 136
file content (508 lines) | stat: -rw-r--r-- 16,282 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
/*
    SuperCollider real time audio synthesis system
    Copyright (c) 2002 James McCartney. All rights reserved.
    http://www.audiosynth.com

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301  USA
*/

#pragma once

#include "SC_Types.h"
#include "SC_Constants.h"

#include <cmath>
#include <limits>

#ifdef __SSE__
#    include <xmmintrin.h>
#endif

#ifdef __SSE4_1__
#    include <smmintrin.h>
#endif


///////////////////////////////////////////////////////////////////////////////////////

/// Checks whether x is NaN. This is a legacy function, use std::isnan instead.
inline bool sc_isnan(float x) { return std::isnan(x); }

/// Checks whether x is finite. This is a legacy function, use std::isfinite instead.
inline bool sc_isnan(double x) { return std::isnan(x); }

inline bool sc_isfinite(float x) { return std::isfinite(x); }

inline bool sc_isfinite(double x) { return std::isfinite(x); }

///////////////////////////////////////////////////////////////////////////////////////

// versions provided for float32 and float64
// did not supply template because do not want to instantiate for integers.
// all constants explicitly cast to prevent PowerPC frsp instruction generation.

///////////////////////////////////////////////////////////////////////////////////////


/*
 * Zap dangerous values (subnormals, infinities, nans) in feedback loops to zero.
 * Prevents pathological math operations in ugens and can be used at the end of a
 * block to fix any recirculating filter values.
 */
inline float32 zapgremlins(float32 x) {
    float32 absx = std::abs(x);
    // very small numbers fail the first test, eliminating denormalized numbers
    //    (zero also fails the first test, but that is OK since it returns zero.)
    // very large numbers fail the second test, eliminating infinities
    // Not-a-Numbers fail both tests and are eliminated.
    return (absx > (float32)1e-15 && absx < (float32)1e15) ? x : (float32)0.;
}

inline float32 sc_log2(float32 x) { return std::log2(x); }

inline float32 sc_log10(float32 x) { return std::log10(std::abs(x)); }

/// Convert MIDI note to cycles per second
inline float32 sc_midicps(float32 note) {
    return (float32)440. * std::pow((float32)2., (note - (float32)69.) * (float32)0.083333333333);
}

/// Convert cycles per second to MIDI note.
inline float32 sc_cpsmidi(float32 freq) {
    return sc_log2(freq * (float32)0.0022727272727) * (float32)12. + (float32)69.;
}

/// Convert an interval in MIDI notes into a frequency ratio.
inline float32 sc_midiratio(float32 midi) { return std::pow((float32)2., midi * (float32)0.083333333333); }

/// Convert a frequency ratio to an interval in MIDI notes.
inline float32 sc_ratiomidi(float32 ratio) { return (float32)12. * sc_log2(ratio); }

/// Convert decimal octaves to cycles per second.
inline float32 sc_octcps(float32 note) { return (float32)440. * std::pow((float32)2., note - (float32)4.75); }

/// Convert cycles per second to decimal octaves.
inline float32 sc_cpsoct(float32 freq) { return sc_log2(freq * (float32)0.0022727272727) + (float32)4.75; }

/// Convert linear amplitude to decibels.
inline float32 sc_ampdb(float32 amp) { return std::log10(amp) * (float32)20.; }

/// Convert decibels to linear amplitude.
inline float32 sc_dbamp(float32 db) { return std::pow((float32)10., db * (float32).05); }

/// Squared value
inline float32 sc_squared(float32 x) { return x * x; }

/// Cubed value
inline float32 sc_cubed(float32 x) { return x * x * x; }

/*
 * Square root
 * The definition of square root is extended for signals so that sqrt(a) when a<0 returns -sqrt(-a).
 */
inline float32 sc_sqrt(float32 x) { return x < (float32)0. ? -sqrt(-x) : sqrt(x); }


/// A value for a hanning window function between 0 and 1.
inline float32 sc_hanwindow(float32 x) {
    if (x < (float32)0. || x > (float32)1.)
        return (float32)0.;
    return (float32)0.5 - (float32)0.5 * static_cast<float32>(cos(x * (float32)twopi));
}

/// A value for a welsh window function between 0 and 1.
inline float32 sc_welwindow(float32 x) {
    if (x < (float32)0. || x > (float32)1.)
        return (float32)0.;
    return static_cast<float32>(sin(x * pi));
}

/// a value for a triangle window function between 0 and 1.
inline float32 sc_triwindow(float32 x) {
    if (x < (float32)0. || x > (float32)1.)
        return (float32)0.;
    if (x < (float32)0.5)
        return (float32)2. * x;
    else
        return (float32)-2. * x + (float32)2.;
}

/// a bilateral value for a triangle window function
inline float32 sc_bitriwindow(float32 x) {
    float32 ax = (float32)1. - std::abs(x);
    if (ax <= (float32)0.)
        return (float32)0.;
    return ax;
}

/// a value for a rectangular window function between 0 and 1.
inline float32 sc_rectwindow(float32 x) {
    if (x < (float32)0. || x > (float32)1.)
        return (float32)0.;
    return (float32)1.;
}

/// Map x onto an S-curve.
inline float32 sc_scurve(float32 x) {
    if (x <= (float32)0.)
        return (float32)0.;
    if (x >= (float32)1.)
        return (float32)1.;
    return x * x * ((float32)3. - (float32)2. * x);
}

/*
 * Map x onto an S-curve.
 * Assumes that x is in range
 */
inline float32 sc_scurve0(float32 x) { return x * x * ((float32)3. - (float32)2. * x); }

/// Map x onto a ramp starting at 0.
inline float32 sc_ramp(float32 x) {
    if (x <= (float32)0.)
        return (float32)0.;
    if (x >= (float32)1.)
        return (float32)1.;
    return x;
}

/// Answer -1 if negative, +1 if positive or 0 if zero
inline float32 sc_sign(float32 x) {
    return x < (float32)0. ? (float32)-1. : (x > (float32)0. ? (float32)1.f : (float32)0.f);
}

/// A nonlinear distortion function.
inline float32 sc_distort(float32 x) { return x / ((float32)1. + std::abs(x)); }

inline float32 sc_distortneg(float32 x) {
    if (x < (float32)0.)
        return x / ((float32)1. - x);
    else
        return x;
}

/// Distortion with a perfectly linear region from -0.5 to +0.5
inline float32 sc_softclip(float32 x) {
    float32 absx = std::abs(x);
    if (absx <= (float32)0.5)
        return x;
    else
        return (absx - (float32)0.25) / x;
}

/// Taylor expansion out to x**9/9! factored  into multiply-adds from Phil Burk.
inline float32 taylorsin(float32 x) {
    // valid range from -pi/2 to +3pi/2
    x = static_cast<float32>((float32)pi2 - std::abs(pi2 - x));
    float32 x2 = x * x;
    return static_cast<float32>(
        x * (x2 * (x2 * (x2 * (x2 * (1.0 / 362880.0) - (1.0 / 5040.0)) + (1.0 / 120.0)) - (1.0 / 6.0)) + 1.0));
}

/// Truncate to multiple of x (e.g. it rounds numbers down to a multiple of x).
inline float32 sc_trunc(float32 x) { return std::trunc(x); }

inline float32 sc_ceil(float32 x) {
#ifdef __SSE4_1__
    __m128 a = _mm_set_ss(x);
    __m128 b = _mm_round_ss(a, a, _MM_FROUND_TO_POS_INF);
    return _mm_cvtss_f32(b);
#else
    return std::ceil(x);
#endif
}

inline float32 sc_floor(float32 x) {
#ifdef __SSE4_1__
    __m128 a = _mm_set_ss(x);
    __m128 b = _mm_round_ss(a, a, _MM_FROUND_TO_NEG_INF);
    return _mm_cvtss_f32(b);
#else
    return std::floor(x);
#endif
}

/// 1 divided by x
inline float32 sc_reciprocal(float32 x) {
#ifdef __SSE__
    // adapted from AP-803 Newton-Raphson Method with Streaming SIMD Extensions
    // 23 bit accuracy (out of 24bit)
    const __m128 arg = _mm_set_ss(x);
    const __m128 approx = _mm_rcp_ss(arg);
    const __m128 muls = _mm_mul_ss(_mm_mul_ss(arg, approx), approx);
    const __m128 doubleApprox = _mm_add_ss(approx, approx);
    const __m128 result = _mm_sub_ss(doubleApprox, muls);
    return _mm_cvtss_f32(result);
#else
    return 1.f / x;
#endif
}

/// Return fractional part
inline float32 sc_frac(float32 x) { return x - sc_floor(x); }

////////////////////////////////

/// Returns ones complement
inline float32 sc_bitNot(float32 x) { return (float32) ~(int)x; }

/// Cubic lagrange interpolator
inline float32 sc_lg3interp(float32 x1, float32 a, float32 b, float32 c, float32 d) {
    float32 x0 = x1 + 1.f;
    float32 x2 = x1 - 1.f;
    float32 x3 = x1 - 2.f;

    float32 x03 = x0 * x3 * 0.5f;
    float32 x12 = x1 * x2 * 0.16666666666666667f;

    return x12 * (d * x0 - a * x3) + x03 * (b * x2 - c * x1);
}

/// Determines the feedback coefficient for a feedback comb filter with the given delay and decay times.
inline float32 sc_CalcFeedback(float32 delaytime, float32 decaytime) {
    if (delaytime == 0.f || decaytime == 0.f)
        return 0.f;

    float32 absret = static_cast<float32>(std::exp(log001 * delaytime / std::abs(decaytime)));
    float32 ret = std::copysign(absret, decaytime);
    return ret;
}

/// Wrap x around ±1, wrapping only once.
inline float32 sc_wrap1(float32 x) {
    if (x >= (float32)1.)
        return x + (float32)-2.;
    if (x < (float32)-1.)
        return x + (float32)2.;
    return x;
}

/// Fold x around ±1, folding only once.
inline float32 sc_fold1(float32 x) {
    if (x >= (float32)1.)
        return (float32)2. - x;
    if (x < (float32)-1.)
        return (float32)-2. - x;
    return x;
}

///////////////////////////////////////////////////////////////////////////////////////

/*
 * Zap dangerous values (subnormals, infinities, nans) in feedback loops to zero.
 * Prevents pathological math operations in ugens and can be used at the end of a
 * block to fix any recirculating filter values.
 */
inline float64 zapgremlins(float64 x) {
    float64 absx = std::abs(x);
    // very small numbers fail the first test, eliminating denormalized numbers
    //    (zero also fails the first test, but that is OK since it returns zero.)
    // very large numbers fail the second test, eliminating infinities
    // Not-a-Numbers fail both tests and are eliminated.
    return (absx > (float64)1e-15 && absx < (float64)1e15) ? x : (float64)0.;
}

inline float64 sc_log2(float64 x) { return std::log2(std::abs(x)); }

inline float64 sc_log10(float64 x) { return std::log10(std::abs(x)); }

/// Convert MIDI note to cycles per second
inline float64 sc_midicps(float64 note) {
    return (float64)440. * std::pow((float64)2., (note - (float64)69.) * (float64)0.08333333333333333333333333);
}

/// Convert cycles per second to MIDI note.
inline float64 sc_cpsmidi(float64 freq) {
    return sc_log2(freq * (float64)0.002272727272727272727272727) * (float64)12. + (float64)69.;
}

/// Convert an interval in MIDI notes into a frequency ratio.
inline float64 sc_midiratio(float64 midi) { return std::pow((float64)2., midi * (float64)0.083333333333); }

/// Convert a frequency ratio to an interval in MIDI notes.
inline float64 sc_ratiomidi(float64 ratio) { return (float64)12. * sc_log2(ratio); }

/// Convert decimal octaves to cycles per second.
inline float64 sc_octcps(float64 note) { return (float64)440. * std::pow((float64)2., note - (float64)4.75); }

/// Convert cycles per second to decimal octaves.
inline float64 sc_cpsoct(float64 freq) { return sc_log2(freq * (float64)0.0022727272727) + (float64)4.75; }

/// Convert linear amplitude to decibels.
inline float64 sc_ampdb(float64 amp) { return std::log10(amp) * (float64)20.; }

/// Convert decibels to linear amplitude.
inline float64 sc_dbamp(float64 db) { return std::pow((float64)10., db * (float64).05); }

/// Squared value
inline float64 sc_squared(float64 x) { return x * x; }

/// Cubed value
inline float64 sc_cubed(float64 x) { return x * x * x; }

/*
 * Square root
 * The definition of square root is extended for signals so that sqrt(a) when a<0 returns -sqrt(-a).
 */
inline float64 sc_sqrt(float64 x) { return x < (float64)0. ? -sqrt(-x) : sqrt(x); }

/// A value for a hanning window function between 0 and 1.
inline float64 sc_hanwindow(float64 x) {
    if (x < (float64)0. || x > (float64)1.)
        return (float64)0.;
    return (float64)0.5 - (float64)0.5 * cos(x * twopi);
}

/// A value for a welsh window function between 0 and 1.
inline float64 sc_welwindow(float64 x) {
    if (x < (float64)0. || x > (float64)1.)
        return (float64)0.;
    return sin(x * pi);
}

/// a value for a triangle window function between 0 and 1.
inline float64 sc_triwindow(float64 x) {
    if (x < (float64)0. || x > (float64)1.)
        return (float64)0.;
    if (x < (float64)0.5)
        return (float64)2. * x;
    else
        return (float64)-2. * x + (float64)2.;
}

/// a bilateral value for a triangle window function
inline float64 sc_bitriwindow(float64 x) {
    float64 ax = std::abs(x);
    if (ax > (float64)1.)
        return (float64)0.;
    return (float64)1. - ax;
}

/// a value for a rectangular window function between 0 and 1.
inline float64 sc_rectwindow(float64 x) {
    if (x < (float64)0. || x > (float64)1.)
        return (float64)0.;
    return (float64)1.;
}

/// Map x onto an S-curve.
inline float64 sc_scurve(float64 x) {
    if (x <= (float64)0.)
        return (float64)0.;
    if (x >= (float64)1.)
        return (float64)1.;
    return x * x * ((float64)3. - (float64)2. * x);
}

/*
 * Map x onto an S-curve.
 * Assumes that x is in range
 */
inline float64 sc_scurve0(float64 x) {
    // assumes that x is in range
    return x * x * ((float64)3. - (float64)2. * x);
}

/// Map x onto a ramp starting at 0.
inline float64 sc_ramp(float64 x) {
    if (x <= (float64)0.)
        return (float64)0.;
    if (x >= (float64)1.)
        return (float64)1.;
    return x;
}

/// Answer -1 if negative, +1 if positive or 0 if zero
inline float64 sc_sign(float64 x) {
    return x < (float64)0. ? (float64)-1. : (x > (float64)0. ? (float64)1.f : (float64)0.f);
}

/// A nonlinear distortion function.
inline float64 sc_distort(float64 x) { return x / ((float64)1. + std::abs(x)); }

inline float64 sc_distortneg(float64 x) {
    if (x < (float64)0.)
        return x / ((float64)1. - x);
    else
        return x;
}

/// Distortion with a perfectly linear region from -0.5 to +0.5
inline float64 sc_softclip(float64 x) {
    float64 absx = std::abs(x);
    if (absx <= (float64)0.5)
        return x;
    else
        return (absx - (float64)0.25) / x;
}

/// Taylor expansion out to x**9/9! factored into multiply-adds from Phil Burk.
inline float64 taylorsin(float64 x) {
    x = pi2 - std::abs(pi2 - x);
    float64 x2 = x * x;
    return x * (x2 * (x2 * (x2 * (x2 * (1.0 / 362880.0) - (1.0 / 5040.0)) + (1.0 / 120.0)) - (1.0 / 6.0)) + 1.0);
}

/// Truncate to multiple of x (e.g. it rounds numbers down to a multiple of x).
inline float64 sc_trunc(float64 x) { return std::trunc(x); }

inline float64 sc_ceil(float64 x) {
#ifdef __SSE4_1__
    __m128d a = _mm_set_sd(x);
    const int cntrl = _MM_FROUND_TO_POS_INF;
    __m128d b = _mm_round_sd(a, a, cntrl);
    return _mm_cvtsd_f64(b);
#else
    return std::ceil(x);
#endif
}

inline float64 sc_floor(float64 x) {
#ifdef __SSE4_1__
    __m128d a = _mm_set_sd(x);
    const int cntrl = _MM_FROUND_TO_NEG_INF;
    __m128d b = _mm_round_sd(a, a, cntrl);
    return _mm_cvtsd_f64(b);
#else
    return std::floor(x);
#endif
}

/// 1 divided by x
inline float64 sc_reciprocal(float64 x) { return 1. / x; }

/// Return fractional part
inline float64 sc_frac(float64 x) { return x - sc_floor(x); }

/// Wrap x around ±1, wrapping only once.
inline float64 sc_wrap1(float64 x) {
    if (x >= (float64)1.)
        return x + (float64)-2.;
    if (x < (float64)-1.)
        return x + (float64)2.;
    return x;
}

/// Fold x around ±1, folding only once.
inline float64 sc_fold1(float64 x) {
    if (x >= (float64)1.)
        return (float64)2. - x;
    if (x < (float64)-1.)
        return (float64)-2. - x;
    return x;
}

/// Convert binary to Gray code.
inline int32 sc_grayCode(int32 x) { return x ^ (x >> 1); }