1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
/*
SuperCollider real time audio synthesis system
Copyright (c) 2002 James McCartney. All rights reserved.
http://www.audiosynth.com
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
//----------------------------------------------------------------------------//
// Ran088: L'Ecuyer's 1996 three-component Tausworthe generator "taus88"
//----------------------------------------------------------------------------//
//
// Returns an integer random number uniformly distributed within [0,4294967295]
//
// The period length is approximately 2^88 (which is 3*10^26).
// This generator is very fast and passes all standard statistical tests.
//
// Reference:
// (1) P. L'Ecuyer, Maximally equidistributed combined Tausworthe generators,
// Mathematics of Computation, 65, 203-213 (1996), see Figure 4.
// (2) recommended in:
// P. L'Ecuyer, Random number generation, chapter 4 of the
// Handbook on Simulation, Ed. Jerry Banks, Wiley, 1997.
//
//----------------------------------------------------------------------------//
//----------------------------------------------------------------------------//
// I chose this random number generator for the following reasons:
// fast.
// easier and faster to seed than other high quality rng's such as Mersenne Twister.
// the internal state is only 12 bytes.
// the period is long enough for music/audio.
// possible to code in altivec in future if needed.
// - James McCartney
//----------------------------------------------------------------------------//
#pragma once
#include "SC_Endian.h"
#include "SC_Types.h"
#include "SC_BoundsMacros.h"
#include "Hash.h"
#include <math.h>
struct RGen {
void init(uint32 seed);
uint32 trand();
int32 irand(int32 scale);
int32 irand2(int32 scale);
int32 ilinrand(int32 scale);
int32 ibilinrand(int32 scale);
float fcoin();
float frand();
float frand2();
float frand0();
float frand8();
float flinrand();
float fbilinrand();
float fsum3rand();
double drand();
double drand2(double scale);
double linrand(double scale);
double bilinrand(double scale);
double exprandrng(double lo, double hi);
double exprand(double scale);
double biexprand(double scale);
double sum3rand(double scale);
uint32 s1, s2, s3; // random generator state
};
inline void RGen::init(uint32 seed) {
// humans tend to use small seeds - mess up the bits
seed = (uint32)Hash((int)seed);
// initialize seeds using the given seed value taking care of
// the requirements. The constants below are arbitrary otherwise
s1 = 1243598713U ^ seed;
if (s1 < 2)
s1 = 1243598713U;
s2 = 3093459404U ^ seed;
if (s2 < 8)
s2 = 3093459404U;
s3 = 1821928721U ^ seed;
if (s3 < 16)
s3 = 1821928721U;
}
/**
* This function is provided for speed in inner loops where the
* state variables are loaded into registers.
* Thus updating the instance variables can
* be postponed until the end of the loop.
*/
inline uint32 trand(uint32& s1, uint32& s2, uint32& s3) {
s1 = ((s1 & (uint32)-2) << 12) ^ (((s1 << 13) ^ s1) >> 19);
s2 = ((s2 & (uint32)-8) << 4) ^ (((s2 << 2) ^ s2) >> 25);
s3 = ((s3 & (uint32)-16) << 17) ^ (((s3 << 3) ^ s3) >> 11);
return s1 ^ s2 ^ s3;
}
/// Generate a random 32 bit number
inline uint32 RGen::trand() { return ::trand(s1, s2, s3); }
/// Generate a double from 0.0 to 0.999...
inline double RGen::drand() {
#if BYTE_ORDER == BIG_ENDIAN
union {
struct {
uint32 hi, lo;
} i;
double f;
} du;
#else
union {
struct {
uint32 lo, hi;
} i;
double f;
} du;
#endif
du.i.hi = 0x41300000;
du.i.lo = trand();
return du.f - 1048576.;
}
/// Generate a float from 0.0 to 0.999...
inline float RGen::frand() {
union {
uint32 i;
float f;
} u; // union for floating point conversion of result
u.i = 0x3F800000 | (trand() >> 9);
return u.f - 1.f;
}
/// Generate a float from +1.0 to +1.999...
inline float RGen::frand0() {
union {
uint32 i;
float f;
} u; // union for floating point conversion of result
u.i = 0x3F800000 | (trand() >> 9);
return u.f;
}
/// Generate a float from -1.0 to +0.999...
inline float RGen::frand2() {
union {
uint32 i;
float f;
} u; // union for floating point conversion of result
u.i = 0x40000000 | (trand() >> 9);
return u.f - 3.f;
}
/// Generate a float from -0.125 to +0.124999...
inline float RGen::frand8() {
union {
uint32 i;
float f;
} u; // union for floating point conversion of result
u.i = 0x3E800000 | (trand() >> 9);
return u.f - 0.375f;
}
/// Generate one of the two float values -1.0 or +1.0
inline float RGen::fcoin() {
union {
uint32 i;
float f;
} u; // union for floating point conversion of result
u.i = 0x3F800000 | (0x80000000 & trand());
return u.f;
}
/// Generates a single random float value in linear distribution from 0.0 to 0.999
inline float RGen::flinrand() {
float a = frand();
float b = frand();
return sc_min(a, b);
}
/// Bilateral linearly distributed random float from -0.999 to +0.999.
inline float RGen::fbilinrand() {
float a = frand();
float b = frand();
return a - b;
}
/**
* Generates a random float that is the
* result of summing three uniform random generators to yield a
* bell-like distribution.
*
* Larry Polansky's loose approximation of a gaussian generator.
*/
inline float RGen::fsum3rand() { return (float)((frand() + frand() + frand() - 1.5) * 0.666666667); }
/// Generate 32 bit integer from 0 to scale - 1
inline int32 RGen::irand(int32 scale) { return (int32)floor(scale * drand()); }
/// Generate a 32 bit integer from -scale to +scale
inline int32 RGen::irand2(int32 scale) { return (int32)floor((2. * scale + 1.) * drand() - scale); }
/// Generates a single random 32 bit integer value in linear distribution from 0 to +scale
inline int32 RGen::ilinrand(int32 scale) {
int32 a = irand(scale);
int32 b = irand(scale);
return sc_min(a, b);
}
/// Generates a single random double value in linear distribution from 0.0 to +scale
inline double RGen::linrand(double scale) {
double a = drand();
double b = drand();
return sc_min(a, b) * scale;
}
/// Bilateral linearly distributed random 32 bit integer from -scale to +scale.
inline int32 RGen::ibilinrand(int32 scale) {
int32 a = irand(scale);
int32 b = irand(scale);
return a - b;
}
/// Bilateral linearly distributed random double from -scale to +scale.
inline double RGen::bilinrand(double scale) {
double a = drand();
double b = drand();
return (a - b) * scale;
}
/// Generates a single random double value in an exponential distributions from lo to hi
inline double RGen::exprandrng(double lo, double hi) { return lo * exp(log(hi / lo) * drand()); }
inline double RGen::exprand(double scale) {
double z;
while ((z = drand()) == 0.0) {
}
return -log(z) * scale;
}
/// Bilateral exponentially distributed random double from -scale to +scale.
inline double RGen::biexprand(double scale) {
double z;
while ((z = drand2(1.)) == 0.0 || z == -1.0) {
}
if (z > 0.0)
z = log(z);
else
z = -log(-z);
return z * scale;
}
/**
* Generates a random double from -scale to +scale that is the
* result of summing three uniform random generators to yield a
* bell-like distribution.
*
* Larry Polansky's loose approximation of a gaussian generator.
*/
inline double RGen::sum3rand(double scale) { return (drand() + drand() + drand() - 1.5) * 0.666666667 * scale; }
/// Generate a double from 0.0 to 0.999...
inline double drand(uint32& s1, uint32& s2, uint32& s3) {
union {
struct {
uint32 hi, lo;
} i;
double f;
} u;
u.i.hi = 0x41300000;
u.i.lo = trand(s1, s2, s3);
return u.f - 1048576.;
}
/// Generate a float from 0.0 to 0.999...
inline float frand(uint32& s1, uint32& s2, uint32& s3) {
union {
uint32 i;
float f;
} u;
u.i = 0x3F800000 | (trand(s1, s2, s3) >> 9);
return u.f - 1.f;
}
/// Generate a float from +1.0 to +1.999...
inline float frand0(uint32& s1, uint32& s2, uint32& s3) {
union {
uint32 i;
float f;
} u;
u.i = 0x3F800000 | (trand(s1, s2, s3) >> 9);
return u.f;
}
/// Generate a float from -1.0 to +0.999...
inline float frand2(uint32& s1, uint32& s2, uint32& s3) {
union {
uint32 i;
float f;
} u;
u.i = 0x40000000 | (trand(s1, s2, s3) >> 9);
return u.f - 3.f;
}
/// Generate a float from -0.125 to +0.124999...
inline float frand8(uint32& s1, uint32& s2, uint32& s3) {
union {
uint32 i;
float f;
} u;
u.i = 0x3E800000 | (trand(s1, s2, s3) >> 9);
return u.f - 0.375f;
}
/// Returns one of the two float values -1.0 or +1.0
inline float fcoin(uint32& s1, uint32& s2, uint32& s3) {
union {
uint32 i;
float f;
} u;
u.i = 0x3F800000 | (0x80000000 & trand(s1, s2, s3));
return u.f;
}
|