File: SC_SndBuf.h

package info (click to toggle)
supercollider 1%3A3.13.0%2Brepack-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 80,296 kB
  • sloc: cpp: 476,363; lisp: 84,680; ansic: 77,685; sh: 25,509; python: 7,909; makefile: 3,440; perl: 1,964; javascript: 974; xml: 826; java: 677; yacc: 314; lex: 175; objc: 152; ruby: 136
file content (225 lines) | stat: -rw-r--r-- 6,432 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
/*
    SuperCollider real time audio synthesis system
    Copyright (c) 2002 James McCartney. All rights reserved.
    http://www.audiosynth.com

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301  USA
*/

#pragma once

#include <stdint.h>

#define GETSNDFILE(x) ((SNDFILE*)x->sndfile)

#ifdef SUPERNOVA

#    include <atomic>
#    include <cassert>

#    ifdef __SSE2__
#        include <emmintrin.h>
#    endif


class rw_spinlock {
    static const uint32_t unlocked_state = 0;
    static const uint32_t locked_state = 0x80000000;
    static const uint32_t reader_mask = 0x7fffffff;

#    ifdef __SSE2__
    static inline void pause() { _mm_pause(); }
#    else
    static inline void pause() {}
#    endif

public:
    struct unique_lock {
        explicit unique_lock(rw_spinlock& sl): sl_(sl) { sl_.lock(); }
        ~unique_lock() { sl_.unlock(); }

    private:
        rw_spinlock& sl_;
    };

    typedef unique_lock unique_lock;

    struct shared_lock {
        explicit shared_lock(rw_spinlock& sl): sl_(sl) { sl_.lock_shared(); }
        ~shared_lock() { sl_.unlock_shared(); }

    private:
        rw_spinlock& sl_;
    };

    rw_spinlock() = default;
    rw_spinlock(rw_spinlock const& rhs) = delete;
    rw_spinlock& operator=(rw_spinlock const& rhs) = delete;
    rw_spinlock(rw_spinlock&& rhs) = delete;

    ~rw_spinlock() { assert(state == unlocked_state); }

    void lock() {
        for (;;) {
            while (state.load(std::memory_order_relaxed) != unlocked_state)
                pause();

            uint32_t expected = unlocked_state;
            if (state.compare_exchange_weak(expected, locked_state, std::memory_order_acquire))
                break;
        }
    }

    bool try_lock() {
        uint32_t expected = unlocked_state;
        if (state.compare_exchange_strong(expected, locked_state, std::memory_order_acquire))
            return true;
        else
            return false;
    }

    void unlock() {
        assert(state.load(std::memory_order_relaxed) == locked_state);
        state.store(unlocked_state, std::memory_order_release);
    }

    void lock_shared() {
        for (;;) {
            /* with the mask, the cas will fail, locked exclusively */
            uint32_t current_state = state.load(std::memory_order_acquire) & reader_mask;
            const uint32_t next_state = current_state + 1;

            if (state.compare_exchange_weak(current_state, next_state, std::memory_order_acquire))
                break;
            pause();
        }
    }

    bool try_lock_shared() {
        /* with the mask, the cas will fail, locked exclusively */
        uint32_t current_state = state.load(std::memory_order_acquire) & reader_mask;
        const uint32_t next_state = current_state + 1;

        if (state.compare_exchange_strong(current_state, next_state, std::memory_order_acquire))
            return true;
        else
            return false;
    }

    void unlock_shared() {
        for (;;) {
            uint32_t current_state = state.load(std::memory_order_relaxed); /* we don't need the reader_mask */
            const uint32_t next_state = current_state - 1;

            if (state.compare_exchange_weak(current_state, uint32_t(next_state)))
                break;
            pause();
        }
    }

private:
    std::atomic<uint32_t> state { unlocked_state };
};

#endif

struct SndBuf {
    double samplerate;
    double sampledur; // = 1/ samplerate
    float* data;
    int channels;
    int samples;
    int frames;
    int mask; // for delay lines
    int mask1; // for interpolating oscillators.
    int coord; // used by fft ugens
    void* sndfile; // used by disk i/o
    // SF_INFO fileinfo; // used by disk i/o
#ifdef SUPERNOVA
    bool isLocal;
    mutable rw_spinlock lock;
#endif
};

typedef struct SndBuf SndBuf;

struct SndBufUpdates {
    int reads;
    int writes;
};
typedef struct SndBufUpdates SndBufUpdates;

enum { coord_None, coord_Complex, coord_Polar };

inline float PhaseFrac(uint32_t inPhase) {
    union {
        uint32_t itemp;
        float ftemp;
    } u;
    u.itemp = 0x3F800000 | (0x007FFF80 & ((inPhase) << 7));
    return u.ftemp - 1.f;
}

inline float PhaseFrac1(uint32_t inPhase) {
    union {
        uint32_t itemp;
        float ftemp;
    } u;
    u.itemp = 0x3F800000 | (0x007FFF80 & ((inPhase) << 7));
    return u.ftemp;
}

inline float lookup(const float* table, int32_t phase, int32_t mask) { return table[(phase >> 16) & mask]; }


#define xlobits 14
#define xlobits1 13

inline float lookupi(const float* table, uint32_t phase, uint32_t mask) {
    float frac = PhaseFrac(phase);
    const float* tbl = table + ((phase >> 16) & mask);
    float a = tbl[0];
    float b = tbl[1];
    return a + frac * (b - a);
}

inline float lookupi2(const float* table, uint32_t phase, uint32_t mask) {
    float frac = PhaseFrac1(phase);
    const float* tbl = table + ((phase >> 16) & mask);
    float a = tbl[0];
    float b = tbl[1];
    return a + frac * b;
}

inline float lookupi1(const float* table0, const float* table1, uint32_t pphase, int32_t lomask) {
    float pfrac = PhaseFrac1(pphase);
    uint32_t index = ((pphase >> xlobits1) & (uint32_t)lomask);
    float val1 = *(const float*)((const char*)table0 + index);
    float val2 = *(const float*)((const char*)table1 + index);
    return val1 + val2 * pfrac;
}


inline float lininterp(float x, float a, float b) { return a + x * (b - a); }

inline float cubicinterp(float x, float y0, float y1, float y2, float y3) {
    // 4-point, 3rd-order Hermite (x-form)
    float c0 = y1;
    float c1 = 0.5f * (y2 - y0);
    float c2 = y0 - 2.5f * y1 + 2.f * y2 - 0.5f * y3;
    float c3 = 0.5f * (y3 - y0) + 1.5f * (y1 - y2);

    return ((c3 * x + c2) * x + c1) * x + c0;
}