1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
|
// dsp thread queue
// Copyright (C) 2007-2015 Tim Blechmann
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING. If not, write to
// the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
// Boston, MA 02111-1307, USA.
#pragma once
#include <algorithm>
#include <atomic>
#include <chrono>
#include <cstdint>
#include <iostream>
#include <memory>
#include <thread>
#include <vector>
#include <cstdio>
#include <boost/lockfree/stack.hpp>
#include <boost/mpl/if.hpp>
#include "nova-tt/pause.hpp"
#include "utilities/branch_hints.hpp"
#include "utilities/utils.hpp"
namespace nova {
template <typename runnable, typename Alloc> class dsp_queue_interpreter;
/*
concept runnable
{
runnable(const & runnable);
operator()(uint threadindex);
};
*/
/** item of a dsp thread queue
*
* \tparam Alloc allocator for successor list
*
*/
template <typename runnable, typename Alloc = std::allocator<void*>> class dsp_thread_queue_item : private Alloc {
typedef nova::dsp_queue_interpreter<runnable, Alloc> dsp_queue_interpreter;
typedef typename Alloc::template rebind<dsp_thread_queue_item>::other new_allocator;
public:
typedef std::uint_fast16_t activation_limit_t;
struct successor_list {
struct data_t {
uint32_t count;
uint32_t size;
dsp_thread_queue_item* content[0];
};
typedef typename Alloc::template rebind<data_t>::other array_allocator;
/* create instance */
explicit successor_list(uint32_t size = 0) {
data = array_allocator().allocate(2 * sizeof(uint32_t) + size * sizeof(dsp_thread_queue_item*));
data->count = 1;
data->size = size;
}
successor_list(successor_list const& rhs): data(rhs.data) { data->count++; }
successor_list& operator=(successor_list const& rhs) {
if (--data->count == 0)
array_allocator().deallocate(data, 2 * sizeof(uint32_t) + data->size * sizeof(dsp_thread_queue_item*));
data = rhs.data;
data->count++;
return *this;
}
std::size_t size(void) const { return data->size; }
bool empty(void) const { return size() == 0; }
dsp_thread_queue_item*& operator[](std::size_t index) {
assert(index < size());
return data->content[index];
}
dsp_thread_queue_item* const& operator[](std::size_t index) const {
assert(index < size());
return data->content[index];
}
~successor_list(void) {
if (--data->count == 0)
array_allocator().deallocate(data, 2 * sizeof(uint32_t) + data->size * sizeof(dsp_thread_queue_item*));
}
data_t* data;
};
dsp_thread_queue_item(runnable const& job, successor_list const& successors, activation_limit_t activation_limit):
activation_count(0),
job(job),
successors(successors),
activation_limit(activation_limit) {}
dsp_thread_queue_item* run(dsp_queue_interpreter& interpreter, std::uint8_t thread_index) {
assert(activation_count == 0);
job(thread_index);
dsp_thread_queue_item* next = update_dependencies(interpreter);
reset_activation_count();
return next;
}
/** called from the run method or once, when dsp queue is initialized */
void reset_activation_count(void) {
assert(activation_count == 0);
activation_count.store(activation_limit, std::memory_order_release);
}
runnable const& get_job(void) const { return job; }
runnable& get_job(void) { return job; }
#ifdef DEBUG_DSP_THREADS
void dump_item(void) {
using namespace std;
printf("\titem %p\n", this);
printf("\tactivation limit %d\n", int(activation_limit));
if (!successors.empty()) {
printf("\tsuccessors:\n");
for (size_t i = 0; i != successors.size(); ++i) {
printf("\t\t%p\n", successors[i]);
}
}
printf("\n");
}
#endif
private:
/** \brief update all successors and possibly mark them as runnable */
dsp_thread_queue_item* update_dependencies(dsp_queue_interpreter& interpreter) {
dsp_thread_queue_item* next_item_to_run;
std::size_t i = 0;
for (;;) {
if (i == successors.size())
return nullptr;
next_item_to_run = successors[i++]->decrement_activation_count();
if (next_item_to_run)
break; // no need to update the next item to run
}
// push remaining items to scheduler queue
while (i != successors.size()) {
dsp_thread_queue_item* next = successors[i++]->decrement_activation_count();
if (next)
interpreter.mark_as_runnable(next);
}
return next_item_to_run;
}
/** \brief decrement activation count and return this, if it drops to zero
*/
inline dsp_thread_queue_item* decrement_activation_count() {
activation_limit_t current = activation_count--;
assert(current > 0);
if (current == 1)
return this;
else
return nullptr;
}
std::atomic<activation_limit_t> activation_count; /**< current activation count */
runnable job;
const successor_list successors; /**< list of successing nodes */
const activation_limit_t activation_limit; /**< number of precedessors */
};
template <typename T, typename Alloc> class raw_vector : Alloc {
public:
explicit raw_vector(size_t elements, Alloc const& alloc = Alloc()): Alloc(alloc), capacity_(elements) {
data = elements ? Alloc::allocate(capacity_ * sizeof(T)) : nullptr;
}
template <class... Args> T* emplace_back(Args&&... args) {
assert(size() != capacity_);
T* element = data + size_;
Alloc::construct(element, std::forward<Args>(args)...);
size_ += 1;
return element;
}
T& operator[](std::size_t index) {
assert(index < size_);
return data[index];
}
T* begin() { return data; }
T* end() { return data + size_; }
bool empty() const { return size_ == 0; }
size_t size() const { return size_; }
size_t capacity() const { return capacity_; }
~raw_vector() {
for (std::size_t i = 0; i != size_; ++i)
Alloc::destroy(data + i);
if (data)
Alloc::deallocate(data, capacity_ * sizeof(Alloc));
}
private:
T* data = nullptr;
const size_t capacity_ = 0;
size_t size_ = 0;
};
template <typename runnable, typename Alloc = std::allocator<void*>> class dsp_thread_queue {
typedef std::uint_fast16_t node_count_t;
typedef nova::dsp_thread_queue_item<runnable, Alloc> dsp_thread_queue_item;
typedef std::vector<dsp_thread_queue_item*, typename Alloc::template rebind<dsp_thread_queue_item*>::other>
item_vector_t;
typedef typename Alloc::template rebind<dsp_thread_queue_item>::other item_allocator;
public:
#ifdef DEBUG_DSP_THREADS
void dump_queue(void) {
using namespace std;
printf("queue %p\n items:\n", this);
for (std::size_t i = 0; i != total_node_count; ++i)
queue_items[i].dump_item();
printf("\ninitial items:\n", this);
for (dsp_thread_queue_item* item : initially_runnable_items)
item->dump_item();
printf("\n");
std::cout << std::endl;
}
#endif
/** preallocate node_count nodes */
dsp_thread_queue(std::size_t node_count, bool has_parallelism = true):
has_parallelism_(has_parallelism),
items(node_count) {
initially_runnable_items.reserve(node_count);
}
~dsp_thread_queue(void) = default;
void add_initially_runnable(dsp_thread_queue_item* item) { initially_runnable_items.push_back(item); }
/** return initialized queue item */
dsp_thread_queue_item* allocate_queue_item(runnable const& job,
typename dsp_thread_queue_item::successor_list const& successors,
typename dsp_thread_queue_item::activation_limit_t activation_limit) {
return items.emplace_back(job, successors, activation_limit);
}
void reset_activation_counts(void) {
for (dsp_thread_queue_item& item : items)
item.reset_activation_count();
}
bool empty() const { return items.empty(); }
node_count_t total_node_count(void) const { return node_count_t(items.size()); }
bool has_parallelism(void) const { return has_parallelism_; }
private:
item_vector_t initially_runnable_items; /* nodes without precedessor */
const bool has_parallelism_;
friend class dsp_queue_interpreter<runnable, Alloc>;
raw_vector<dsp_thread_queue_item, item_allocator> items;
};
template <typename runnable, typename Alloc = std::allocator<void*>> class dsp_queue_interpreter {
protected:
typedef nova::dsp_thread_queue<runnable, Alloc> dsp_thread_queue;
typedef nova::dsp_thread_queue_item<runnable, Alloc> dsp_thread_queue_item;
typedef typename dsp_thread_queue_item::successor_list successor_list;
typedef std::size_t size_t;
public:
typedef boost::uint_fast8_t thread_count_t;
typedef boost::uint_fast16_t node_count_t;
typedef std::unique_ptr<dsp_thread_queue> dsp_thread_queue_ptr;
dsp_queue_interpreter(thread_count_t tc, bool yield_if_busy = false): yield_if_busy(yield_if_busy) {
if (!runnable_items.is_lock_free())
std::cout << "Warning: scheduler queue is not lockfree!" << std::endl;
calibrate_backoff(10);
set_thread_count(tc);
}
/** prepares queue and queue interpreter for dsp tick
*
* \return true, if dsp queue is valid
* false, if no dsp queue is available or queue is empty
*/
bool init_tick(void) {
if (unlikely(!queue || queue->empty()))
return false;
/* reset node count */
assert(node_count == 0);
assert(runnable_items.empty());
node_count.store(queue->total_node_count(), std::memory_order_release);
for (auto* item : queue->initially_runnable_items)
mark_as_runnable(item);
return true;
}
dsp_thread_queue_ptr release_queue(void) {
dsp_thread_queue_ptr ret(queue.release());
return ret;
}
dsp_thread_queue_ptr reset_queue(dsp_thread_queue_ptr&& new_queue) {
dsp_thread_queue_ptr ret(std::move(queue));
queue = std::move(new_queue);
if (queue.get() == nullptr)
return ret;
queue->reset_activation_counts();
#ifdef DEBUG_DSP_THREADS
queue->dump_queue();
#endif
if (queue->has_parallelism()) {
thread_count_t thread_number = std::min(
thread_count_t(std::min(total_node_count(), node_count_t(std::numeric_limits<thread_count_t>::max()))),
thread_count);
used_helper_threads = thread_number - 1; /* this thread is not waked up */
} else
used_helper_threads = 0;
return ret;
}
node_count_t total_node_count(void) const { return queue->total_node_count(); }
void set_thread_count(thread_count_t i) {
assert(i < std::numeric_limits<thread_count_t>::max());
i = std::max(thread_count_t(1u), i);
thread_count = i;
}
thread_count_t get_thread_count(void) const { return thread_count; }
thread_count_t get_used_helper_threads(void) const { return used_helper_threads; }
void tick(thread_count_t thread_index) {
if (yield_if_busy)
run_item<true>(thread_index);
else
run_item<false>(thread_index);
}
private:
static const int max_backup_loops = 16384;
struct backoff {
backoff(int min, int max): min(min), max(max), loops(min) {}
void run() {
for (int i = 0; i != loops; ++i)
nova::detail::pause();
loops = std::min(loops * 2, max);
}
void reset() { loops = min; }
const int min, max;
int loops;
};
struct yield_backoff {
yield_backoff(int dummy_min, int dummy_max) {}
void run() { std::this_thread::yield(); }
void reset() {}
};
template <bool YieldBackoff> struct select_backoff {
typedef typename boost::mpl::if_c<YieldBackoff, yield_backoff, backoff>::type type;
};
void calibrate_backoff(int timeout_in_seconds) {
using namespace std;
using namespace std::chrono;
const int backoff_iterations = 100;
vector<nanoseconds> measured_values;
generate_n(back_inserter(measured_values), 16, [backoff_iterations] {
backoff b(max_backup_loops, max_backup_loops);
auto start = high_resolution_clock::now();
for (int i = 0; i != backoff_iterations; ++i)
b.run();
auto end = high_resolution_clock::now();
auto diff = duration_cast<nanoseconds>(end - start);
return diff;
});
std::sort(measured_values.begin(), measured_values.end());
auto median = measured_values[measured_values.size() / 2];
watchdog_iterations = (seconds(timeout_in_seconds) / median) * backoff_iterations;
}
template <bool YieldBackoff> void run_item(thread_count_t index) {
// note: in future we can avoid the watchdog on osx and linux, as they provide proper
// deadline scheduling policies
typedef typename select_backoff<YieldBackoff>::type backoff_t;
backoff_t b(8, max_backup_loops);
int poll_counts = 0;
for (;;) {
if (!node_count.load(std::memory_order_acquire))
return;
/* we still have some nodes to process */
int state = run_next_item(index);
switch (state) {
case no_remaining_items:
return;
case fifo_empty:
b.run();
++poll_counts;
break;
case remaining_items:
b.reset();
poll_counts = 0;
}
if (YieldBackoff)
continue;
if (poll_counts == watchdog_iterations) {
if (index == 0) {
std::printf(
"nova::dsp_queue_interpreter::run_item: possible lookup detected in main audio thread\n");
abort();
} else {
std::printf(
"nova::dsp_queue_interpreter::run_item: possible lookup detected in dsp helper thread\n");
return;
}
}
}
}
public:
void tick_main(void) {
if (yield_if_busy)
run_item_main<true>();
else
run_item_main<false>();
}
private:
template <bool YieldBackoff> void run_item_main(void) {
run_item<YieldBackoff>(0);
wait_for_end<YieldBackoff>();
assert(runnable_items.empty());
}
template <bool YieldBackoff> void wait_for_end(void) {
typedef typename select_backoff<YieldBackoff>::type backoff_t;
backoff_t b(8, max_backup_loops);
const int iterations = watchdog_iterations * 2;
int count = 0;
while (node_count.load(std::memory_order_acquire) != 0) {
b.run();
++count;
if (!YieldBackoff && (count == iterations)) {
std::printf("nova::dsp_queue_interpreter::wait_for_end: possible lookup detected\n");
}
} // busy-wait for helper threads to finish
}
HOT int run_next_item(thread_count_t index) {
dsp_thread_queue_item* item;
bool success = runnable_items.pop(item);
if (!success)
return fifo_empty;
node_count_t consumed = 0;
do {
item = item->run(*this, index);
consumed += 1;
} while (item != nullptr);
node_count_t remaining = node_count.fetch_sub(consumed, std::memory_order_release);
assert(remaining >= consumed);
if (remaining == consumed)
return no_remaining_items;
else
return remaining_items;
}
void mark_as_runnable(dsp_thread_queue_item* item) { runnable_items.push(item); }
friend class nova::dsp_thread_queue_item<runnable, Alloc>;
private:
enum { no_remaining_items, fifo_empty, remaining_items };
dsp_thread_queue_ptr queue;
thread_count_t thread_count; /* number of dsp threads to be used by this queue */
thread_count_t used_helper_threads; /* number of helper threads, which are actually used */
boost::lockfree::stack<dsp_thread_queue_item*, boost::lockfree::capacity<32768>> runnable_items;
std::atomic<node_count_t> node_count = { 0 }; /* number of nodes, that need to be processed during this tick */
int watchdog_iterations;
bool yield_if_busy;
};
} /* namespace nova */
|