File: BeatTrack2.cpp

package info (click to toggle)
supercollider 1%3A3.4.5-1wheezy1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 26,972 kB
  • sloc: cpp: 116,645; lisp: 64,914; ansic: 10,725; python: 3,548; perl: 766; ruby: 487; sh: 152; makefile: 117; xml: 13
file content (574 lines) | stat: -rw-r--r-- 20,756 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
/*
	SuperCollider real time audio synthesis system
 Copyright (c) 2002 James McCartney. All rights reserved.
	http://www.audiosynth.com

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301  USA
 */

//BeatTrack2 UGen implemented by Nick Collins (http://www.informatics.sussex.ac.uk/users/nc81/)
//6 Nov 2007

#include "ML.h"

//need to add bestgroove option to store groove, else remove output which is currently always straight 16ths


static const int g_numtempi= 120;
static float g_periods[g_numtempi]= { 1, 0.98360655737705, 0.96774193548387, 0.95238095238095, 0.9375, 0.92307692307692, 0.90909090909091, 0.8955223880597, 0.88235294117647, 0.8695652173913, 0.85714285714286, 0.84507042253521, 0.83333333333333, 0.82191780821918, 0.81081081081081, 0.8, 0.78947368421053, 0.77922077922078, 0.76923076923077, 0.75949367088608, 0.75, 0.74074074074074, 0.73170731707317, 0.72289156626506, 0.71428571428571, 0.70588235294118, 0.69767441860465, 0.68965517241379, 0.68181818181818, 0.67415730337079, 0.66666666666667, 0.65934065934066, 0.65217391304348, 0.64516129032258, 0.63829787234043, 0.63157894736842, 0.625, 0.61855670103093, 0.61224489795918, 0.60606060606061, 0.6, 0.59405940594059, 0.58823529411765, 0.58252427184466, 0.57692307692308, 0.57142857142857, 0.56603773584906, 0.5607476635514, 0.55555555555556, 0.55045871559633, 0.54545454545455, 0.54054054054054, 0.53571428571429, 0.53097345132743, 0.52631578947368, 0.52173913043478, 0.51724137931034, 0.51282051282051, 0.50847457627119, 0.50420168067227, 0.5, 0.49586776859504, 0.49180327868852, 0.48780487804878, 0.48387096774194, 0.48, 0.47619047619048, 0.47244094488189, 0.46875, 0.46511627906977, 0.46153846153846, 0.45801526717557, 0.45454545454545, 0.45112781954887, 0.44776119402985, 0.44444444444444, 0.44117647058824, 0.43795620437956, 0.43478260869565, 0.43165467625899, 0.42857142857143, 0.42553191489362, 0.42253521126761, 0.41958041958042, 0.41666666666667, 0.41379310344828, 0.41095890410959, 0.40816326530612, 0.40540540540541, 0.40268456375839, 0.4, 0.39735099337748, 0.39473684210526, 0.3921568627451, 0.38961038961039, 0.38709677419355, 0.38461538461538, 0.38216560509554, 0.37974683544304, 0.37735849056604, 0.375, 0.37267080745342, 0.37037037037037, 0.3680981595092, 0.36585365853659, 0.36363636363636, 0.36144578313253, 0.35928143712575, 0.35714285714286, 0.35502958579882, 0.35294117647059, 0.35087719298246, 0.34883720930233, 0.34682080924855, 0.3448275862069, 0.34285714285714, 0.34090909090909, 0.33898305084746, 0.33707865168539, 0.33519553072626 };
//float g_tempoweight[g_numtempi]= { 0.8, 0.82581988897472, 0.83651483716701, 0.84472135955, 0.85163977794943, 0.85773502691896, 0.86324555320337, 0.8683130051064, 0.87302967433402, 0.87745966692415, 0.88164965809277, 0.88563488385777, 0.88944271909999, 0.89309493362513, 0.89660917830793, 0.9, 0.90327955589886, 0.90645812948448, 0.90954451150103, 0.91254628677423, 0.91547005383793, 0.91832159566199, 0.9211060141639, 0.92382783747338, 0.92649110640674, 0.92909944487358, 0.93165611772088, 0.93416407864999, 0.93662601021279, 0.93904435743076, 0.94142135623731, 0.94375905768565, 0.94605934866804, 0.94832396974191, 0.95055453054182, 0.95275252316519, 0.9549193338483, 0.95705625319186, 0.95916448515084, 0.96124515496597, 0.96329931618555, 0.96532795690183, 0.96733200530682, 0.969312334656, 0.97126976771554, 0.97320508075689, 0.97511900715418, 0.97701224063136, 0.97888543819998, 0.98073922282301, 0.98257418583506, 0.98439088914586, 0.98618986725025, 0.98797162906496, 0.9897366596101, 0.99148542155127, 0.99321835661586, 0.99493588689618, 0.99663841605004, 0.99832633040858, 1, 0.99832633040858, 0.99663841605004, 0.99493588689618, 0.99321835661586, 0.99148542155127, 0.9897366596101, 0.98797162906496, 0.98618986725025, 0.98439088914586, 0.98257418583506, 0.98073922282301, 0.97888543819998, 0.97701224063136, 0.97511900715418, 0.97320508075689, 0.97126976771554, 0.969312334656, 0.96733200530682, 0.96532795690183, 0.96329931618555, 0.96124515496597, 0.95916448515084, 0.95705625319186, 0.9549193338483, 0.95275252316519, 0.95055453054182, 0.94832396974191, 0.94605934866804, 0.94375905768565, 0.94142135623731, 0.93904435743076, 0.93662601021279, 0.93416407864999, 0.93165611772088, 0.92909944487358, 0.92649110640674, 0.92382783747338, 0.9211060141639, 0.91832159566199, 0.91547005383793, 0.91254628677423, 0.90954451150103, 0.90645812948448, 0.90327955589886, 0.9, 0.89660917830793, 0.89309493362513, 0.88944271909999, 0.88563488385777, 0.88164965809277, 0.87745966692415, 0.87302967433402, 0.8683130051064, 0.86324555320337, 0.85773502691896, 0.85163977794943, 0.84472135955, 0.83651483716701, 0.82581988897472 };
//const float g_groove = 0.32;


static float g_sep[8]= {0.0, 0.25, 0.5, 0.75, 0.0, 0.32, 0.5, 0.82};
//weight for particular step
static float g_weight[4]= {1.0,0.5,0.9,0.6};
//weight for blurring feature envelope locally
static float g_weight2[9]= {0.05, 0.1, 0.3,0.7,1.0,0.7,0.3, 0.1, 0.05};

//void BeatTrack2_dofft(BeatTrack2 *unit, uint32);
static void calculatetemplate(BeatTrack2 *unit, int which, int j);
static void finaldecision(BeatTrack2 *unit);

void BeatTrack2_Ctor(BeatTrack2* unit)
{
	//unit->m_srate = unit->mWorld->mFullRate.mSampleRate;
	float kblocklength=  unit->mWorld->mFullRate.mBufDuration; //seconds per control block
	unit->m_krlength= kblocklength;
	//N features per block over numphases*2 variants for one of 120 tempi, so need at least 120 blocks to complete

	unit->m_phaseaccuracy = ZIN0(3); //0.02; //20 msec resolution; could be argument of UGen

	unit->m_numphases = (int*)RTAlloc(unit->mWorld, g_numtempi * sizeof(int));
	//unit->m_phases = (float**)RTAlloc(unit->mWorld, g_numtempi * sizeof(float*));

	for (int j=0; j<g_numtempi; ++j) {

		float period= g_periods[j];

		int num= (int)(period/unit->m_phaseaccuracy); //maximum will be 1.0/0.02 = 50

		unit->m_numphases[j]=num;

		//
		//	unit->m_phases[j]= (float*)RTAlloc(unit->mWorld, unit->m_numphases[j] * sizeof(float));
		//
		//	float phase=0.0;
		//
		//	for (i=0; i<num; ++i) {
		//	unit->m_phases[j][i] = phase;
		//	phase += unit->m_phaseaccuracy;
		//	}

	}

	unit->m_numfeatures = (int)(ZIN0(1)+0.001);



	//for efficiency
	unit->m_scores= (float*)RTAlloc(unit->mWorld, (2*unit->m_numfeatures) * sizeof(float));

	unit->m_temporalwindowsize= ZIN0(2); //typically small, 2 seconds for fast reactions compared to 6 secs for BeatTrack

	unit->m_fullwindowsize = unit->m_temporalwindowsize + 1.0 + 0.1; //plus one to cover all phases of the 60bpm based period, and a further 0.1 for indexing safety; ie looking at areas around the point you're interested in

	unit->m_buffersize = (int)(unit->m_fullwindowsize/unit->m_krlength); //in control blocks


	//printf("loading test blocklength %f numfeatures %d temporal %f full %f blocks %d \n",unit->m_krlength, unit->m_numfeatures, unit->m_temporalwindowsize, unit->m_fullwindowsize, unit->m_buffersize);



	//float ** m_pastfeatures;  //for each feature, a trail of last m_workingmemorysize values
	unit->m_pastfeatures = (float**)RTAlloc(unit->mWorld, unit->m_numfeatures * sizeof(float*));

	for (int j=0; j<unit->m_numfeatures; ++j) {

		unit->m_pastfeatures[j]= (float*)RTAlloc(unit->mWorld, unit->m_buffersize * sizeof(float));

		Clear(unit->m_buffersize, unit->m_pastfeatures[j]); //set all to zero at first

		//for (i=0; i<unit->m_buffersize; ++i) {
		//	unit->m_pastfeatures[j][i] = 0.0;
		//	}
		//
	}

	//main counter
	unit->m_counter= 0;

	//could avoid allocation by having a hard limit on
	unit->bestscore= (float*)RTAlloc(unit->mWorld, 4 * unit->m_numfeatures * sizeof(float));
	unit->bestphase= (int*)RTAlloc(unit->mWorld, 4 * unit->m_numfeatures * sizeof(int));
	unit->besttempo= (int*)RTAlloc(unit->mWorld, 4 * unit->m_numfeatures * sizeof(int));
	unit->bestgroove= (int*)RTAlloc(unit->mWorld, 4 * unit->m_numfeatures * sizeof(int));

	for (int i=0; i<4; ++i) {

		int basepos= i*unit->m_numfeatures;

		for (int j=0; j<unit->m_numfeatures; ++j) {
			unit->bestscore[basepos+j]= -9999.0;
			unit->bestphase[basepos+j]= 0;
			unit->besttempo[basepos+j]= 60;
			unit->bestgroove[basepos+j]= 0;
		}
	}

	unit->m_phase= 0.0;
	unit->m_period= 0.5;
	unit->m_groove= 0;
	unit->m_currtempo=2;
	unit->m_phaseperblock= unit->m_krlength/unit->m_period;

	unit->m_predictphase= 0.4f;
	unit->m_predictperiod = 0.3f;


	unit->m_outputphase= unit->m_phase;
	unit->m_outputtempo= unit->m_currtempo;
	unit->m_outputgroove= unit->m_groove;
	unit->m_outputphaseperblock= unit->m_phaseperblock;



	unit->m_calculationperiod= 0.5; //every half second; could also be additional argument to UGen
	unit->m_calculationschedule= 0.0;

	//printf("srate %f conversion factor %f frame period %f \n", unit->m_srate, unit->m_srateconversion, unit->m_frameperiod);


	int bufnum = (int)(ZIN0(5)+0.001f);
	if (bufnum >= unit->mWorld->mNumSndBufs)
		bufnum = 0;

	if (bufnum<0)
		unit->m_weightingscheme = bufnum<2 ? 0 : 1;
	else {
		SndBuf *buf = unit->mWorld->mSndBufs + bufnum;
		unit->m_tempoweights= buf;
		unit->m_weightingscheme=2;
	}

	//printf("bufnum %d weightingscheme %d check %f %f\n", bufnum, unit->m_weightingscheme, unit->m_tempoweights[0], unit->m_tempoweights[119]);


	unit->halftrig=0;
	unit->q1trig=0;
	unit->q2trig=0;


	unit->mCalcFunc = (UnitCalcFunc)&BeatTrack2_next;
}



void BeatTrack2_Dtor(BeatTrack2 *unit)
{
	RTFree(unit->mWorld, unit->m_numphases);

	RTFree(unit->mWorld, unit->m_scores);

	RTFree(unit->mWorld, unit->bestscore);
	RTFree(unit->mWorld, unit->bestphase);
	RTFree(unit->mWorld, unit->besttempo);

	for (int j=0; j<unit->m_numfeatures; ++j)
		RTFree(unit->mWorld, unit->m_pastfeatures[j]);

	RTFree(unit->mWorld, unit->m_pastfeatures);
}



//over phases and for each groove
void calculatetemplate(BeatTrack2 *unit, int which, int j)
{
	int tmpindex;

	int startcounter= unit->m_startcounter;

	int numphases= unit->m_numphases[which];

	float period= g_periods[which];

	float blockconvert= unit->m_krlength;

	float windowsize = unit->m_temporalwindowsize;

	int buffersize= unit->m_buffersize; //unit->m_fullwindowsize/unit->m_krlength; //in control blocks

	float ** pastfeatures= unit->m_pastfeatures;
	//unit->m_pastfeatures = (float**)RTAlloc(unit->mWorld, unit->m_numfeatures * sizeof(float*));

	int beatsfit= (int)(windowsize/period); //complete beats only, or also fit as many as possible?

	float weight;  //compensation for number of events matched; may alter equation later

	switch (unit->m_weightingscheme)
	{
	case 0:
		weight = 1.0f;	//flat
		break;
	case 1:
		weight= 1.0f/(beatsfit*4); //compensate for number of time points tested
		break;
	case 2:
		SndBuf * buf = unit->m_tempoweights;
		if (buf->data)
			weight = buf->data[which]; //user defined temmpo biases (usually a mask on allowed tempi)
		else
			weight = 1.f;
		break;
	}

	int numfeatures= unit->m_numfeatures;

	float * scores = unit->m_scores;  //[2*numfeatures];

	float * bestscore = unit->bestscore;
	int * bestphase = unit->bestphase;
	int * besttempo = unit->besttempo;
	int * bestgroove = unit->bestgroove;

	for (int i=0; i<numphases; ++i) {

		//initialise scores
		//for (j=0; j<2; ++j)
		for (int k=0; k<numfeatures; ++k)
			scores[2*k+j]=0.0;

		float phaseadd = i*unit->m_phaseaccuracy;

		//calculation for a particular phase of template
		//for (j=0; j<2; ++j) {

		for(int h=0; h<beatsfit; ++h) {

			for(int l=0; l<4; ++l) {

				float sep= phaseadd+ (h*period)+ ((g_sep[j*4+l]) * period);
				float weight= g_weight[l];

				int blocks= (int)((sep/blockconvert)+0.5); //round to nearest

				//convert sep to control periods and find appropriate point in source data
				int index= (startcounter+ buffersize - blocks)%(buffersize);


				//widen over four either side
				for (int m= (-4); m<5;++m) {

					int actualindex= (index+buffersize+m)%(buffersize);

					for (int k=0; k<numfeatures; ++k) {

						int scoreindexnow = 2*k+j;

						//could widen this value here, even based on cubic interpolation etc
						scores[scoreindexnow] += weight * (g_weight2[m+4])* (pastfeatures[k][actualindex]);

					}

					//scores[2*k+j] += weight * (pastfeatures[k][index]);


				}

			}

		}
		//}

		//update any winners from scores
		//for (j=0; j<2; ++j) {

		for (int k=0; k<numfeatures; ++k) {

			float scorenow= (scores[2*k+j]) * weight;

			//NEED TO STORE J IF PRESERVING SENSE OF GROOVE

			if(scorenow>bestscore[k]) {

				tmpindex= numfeatures+k;
				//shift up to make room
				bestscore[tmpindex]= bestscore[k]; bestphase[tmpindex]= bestphase[k];
				besttempo[tmpindex]= besttempo[k]; bestgroove[tmpindex]=bestgroove[k];

				bestscore[k]= scorenow; bestphase[k]= i; besttempo[k]= which; bestgroove[k]=j;

				//printf("bestscore %f bestphase %d besttempo %d bestgroove %d \n", bestscore[k],bestphase[k],besttempo[k], bestgroove[k]);
			}
			else if (scorenow>bestscore[numfeatures+k]) {

				tmpindex= numfeatures+k;
				bestscore[tmpindex]= scorenow; bestphase[tmpindex]= i;
				besttempo[tmpindex]= which; bestgroove[tmpindex]=j;

			}
		}
		//}
	}

}





//a winner must appear at least twice, across features, and be superior to the secondbest in those features too by some margins
//a consistency check could also run to look at change from last time to this
void finaldecision(BeatTrack2 *unit)
{
	int foundgood= 0;
	int bestcandidate =0;
	int bestpreviousmatchsum=0; //(-1);  //should be 0, but allowing different for now
	float excess; //, consistency;
				  //int exactmatches, closematches;  //can be out by a few indices on period; could match on tempo but not phase etc
				  //combine these four factors in one master score?

	for (int i=0; i<unit->m_numfeatures; ++i) {

		int matchsum=0;

		float secondbest= unit->bestscore[unit->m_numfeatures+i];
		excess= (secondbest!=0) ? (unit->bestscore[i]/ secondbest): unit->bestscore[i];
		int tempo = unit->besttempo[i];

		//could check consistency too by looking at phase update from last prediction in same feature

		for (int j=0; j<unit->m_numfeatures; ++j) {

			if(j!=i) {

				if (abs(unit->besttempo[j]-tempo)<5) matchsum++;

			}

			//check over all previous features
			if (abs(unit->besttempo[2*unit->m_numfeatures+j]- tempo)<5) matchsum++;

		}

		//printf("i %d matchsum %d excess %f \n",i, matchsum, excess);

		if(secondbest!= 0) matchsum += (int)excess;

		//so must have at least one match //&& (excess>1.03)
		if ((matchsum>bestpreviousmatchsum)) {bestcandidate = i; bestpreviousmatchsum= matchsum; foundgood=1;}

	}


	//consistency: could require it to win twice; have a candidatepending which makes a phase prediction; only let through if prediction fulfilled

	//unit->m_amortlength will be numtempi *2  = 240

	float bestphase = fmod( ((unit->bestphase[bestcandidate] * unit->m_phaseaccuracy)  + (unit->m_krlength * (unit->m_amortlength)))/(unit->m_period), (float)1.0);

	//if(unit->m_prediction) {

	if ((fabs(bestphase - unit->m_predictphase)< ((2*(unit->m_phaseaccuracy))/unit->m_predictperiod)) && (fabs( (g_periods[unit->besttempo[bestcandidate]]) - unit->m_predictperiod ) <0.04) ) {

		unit->m_period = unit->m_predictperiod;
		//time elapsed since a known beat is phase of winner in seconds, to calculation start point, plus time for calculation (120 control blocks) divided by period, modulo 1.0
		unit->m_phase= bestphase;
		unit->m_currtempo = 1.f/unit->m_period;
		unit->m_phaseperblock = unit->m_krlength/unit->m_period;

	}

	//}

	//unit->m_prediction=false;


	//if(foundgood) {
	//if clear winner

	unit->m_predictperiod = g_periods[unit->besttempo[bestcandidate]];

	//time elapsed since a known beat is phase of winner in seconds, to calculation start point, plus time for calculation (120 control blocks) divided by period, modulo 1.0
	unit->m_predictphase= fmod( ( (unit->bestphase[bestcandidate] * unit->m_phaseaccuracy)  + (unit->m_krlength * (unit->m_amortlength)) + unit->m_calculationperiod)/(unit->m_period),(float)1.0);



	//if(foundgood) {
	////if clear winner
	//
	//unit->m_period = g_periods[unit->besttempo[bestcandidate]];
	////time elapsed since a known beat is phase of winner in seconds, to calculation start point, plus time for calculation (120 control blocks) divided by period, modulo 1.0
	//unit->m_phase= fmod( ((unit->bestphase[bestcandidate] * unit->m_phaseaccuracy)  + (unit->m_krlength * 120))/(unit->m_period), 1.0);
	//
	//unit->m_currtempo = 1.0/unit->m_period;
	//unit->m_phaseperblock = unit->m_krlength/unit->m_period;
	//}



}


void BeatTrack2_next(BeatTrack2 *unit, int wrongNumSamples)
{
	//keep updating feature memories
	unit->m_counter= (unit->m_counter+1)%(unit->m_buffersize);

	int busnum = (int)(ZIN0(0)+0.001f);

	//unit->m_features = unit->mWorld->mControlBus + busnum;

	float * features= unit->mWorld->mControlBus + busnum;

	//hmm, is this pointer guaranteed to stay the same? may have to update each time...
	for (int j=0; j<unit->m_numfeatures; ++j) {
		unit->m_pastfeatures[j][unit->m_counter]= features[j]; //unit->m_features[j];
	}

	unit->m_calculationschedule += unit->m_krlength;

	//check for new calculation round
	if(unit->m_calculationschedule> unit->m_calculationperiod) {

		unit->m_calculationschedule -= unit->m_calculationperiod;

		//reset best scores and move old to previous slots
		for (int i=0; i<2; ++i) {

			int pos1= (2+i)*unit->m_numfeatures;
			int pos2= i*unit->m_numfeatures;

			for (int j=0; j<unit->m_numfeatures; ++j) {
				unit->bestscore[pos1+j]= unit->bestscore[pos2+j];
				unit->bestscore[pos2+j]= -9999.0;
				unit->bestphase[pos1+j]= unit->bestphase[pos2+j];
				unit->bestphase[pos2+j]= 0;
				unit->besttempo[pos1+j]= unit->besttempo[pos2+j];
				unit->besttempo[pos2+j]= 60;
			}

		}

		//state 0 is do nothing
		unit->m_amortisationstate=1;
		unit->m_amortcount=0;
		unit->m_amortlength=g_numtempi*2; //
										  //unit->m_amortisationsteps=0;

		//store essential data
		unit->m_startcounter = unit->m_counter;

		unit->m_currphase=unit->m_phase;
	}


	//keeps incrementing but will be reset with each calculation run
	//unit->m_amortisationsteps=unit->m_amortisationsteps+1;

	//if state nonzero do something
	switch(unit->m_amortisationstate) {
		case 0:
			break; //do nothing case
		case 1: //calculate acf
			calculatetemplate(unit,unit->m_amortcount >> 1, unit->m_amortcount %2);

			unit->m_amortcount=unit->m_amortcount+1;

			if(unit->m_amortcount==unit->m_amortlength) {
				unit->m_amortisationstate=2;
				//unit->m_amortlength=1;
				//unit->m_amortcount=0;
			}
				break;
		case 2: //done calculating template matches, now decide whether to follow through
			finaldecision(unit);
			unit->m_amortisationstate=0;
			break;

		default:
			break;
	}




	//test if impulse to output
	unit->m_phase+=unit->m_phaseperblock;

	//if(unit->m_counter%400==0) printf("phase %f period %f\n", unit->m_phase, unit->m_period);

	//if not locked, update output phase from model phase, else keep a separate output phase

	float lock= ZIN0(4);
	//printf("lock %f \n",lock);

	if(lock<0.5f) {

		unit->m_outputphase= unit->m_phase;
		unit->m_outputtempo= unit->m_currtempo;
		unit->m_outputgroove= unit->m_groove;
		unit->m_outputphaseperblock= unit->m_phaseperblock;
	} else {

		unit->m_outputphase+=unit->m_outputphaseperblock;

	}

	if (unit->m_phase >= 1.f) {unit->m_phase-= 1.f;}

	//0 is beat, 1 is quaver, 2 is semiquaver, 3 is actual current tempo in bps
	//so no audio accuracy with beats, just asap, may as well be control rate
	ZOUT0(0)=0.0;
	ZOUT0(1)=0.0;
	ZOUT0(2)=0.0;
	ZOUT0(3)=unit->m_outputtempo; //*0.016666667;
	ZOUT0(4)=unit->m_outputphase;
	ZOUT0(5)=unit->m_outputgroove;

	//output beat
	if (unit->m_outputphase >= 1.f) {

		//printf("beat \n");

		unit->m_outputphase -= 1.f;
		ZOUT0(0)=1.0;
		ZOUT0(1)=1.0;
		ZOUT0(2)=1.0;
		unit->halftrig=0;
		unit->q1trig=0;
		unit->q2trig=0;
	}

	if (unit->m_outputphase>=0.5 && unit->halftrig==0) {
		ZOUT0(1)=1.0;
		ZOUT0(2)=1.0;
		unit->halftrig=1;
	}

	float groove= unit->m_outputgroove *0.07;

	if (unit->m_outputphase>=(0.25+groove) && unit->q1trig==0) {
		ZOUT0(2)=1.0;
		unit->q1trig=1;
	}

	if (unit->m_outputphase>=(0.75+groove) && unit->q2trig==0) {
		ZOUT0(2)=1.0;
		unit->q2trig=1;
	}

}