1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
|
/*
SuperCollider real time audio synthesis system
Copyright (c) 2002 James McCartney. All rights reserved.
http://www.audiosynth.com
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
//Feature (Onset) Detection implemented by sick lincoln for sc3
//Jensen,K. & Andersen, T. H. (2003). Real-time Beat Estimation Using Feature Extraction.
//In Proceedings of the Computer Music Modeling and RetrievalSymposium, Lecture Notes in Computer Science. Springer Verlag.
//Hainsworth, S. (2003) Techniques for the Automated Analysis of Musical Audio. PhD, university of cambridge engineering dept.
//possible to make a Goto style Detector for a given band and with history of two samples-
//should do separately as PV_GotoBandTrack
//next perhaps Duxbury et al/ Mauri et al different conception of high frequency content with ratio of changes
#include "FFT_UGens.h"
struct PV_OnsetDetectionBase : public Unit
{
float * m_prevframe;
int m_numbins;
int m_waiting, m_waitSamp, m_waitLen;
};
//FFT onset detector combining 4 advised features from Jensen/Andersen
struct PV_JensenAndersen : public PV_OnsetDetectionBase
{
float m_hfc,m_hfe,m_sc,m_sf;
int m_fourkindex;
};
//FFT onset detector combining 2 advised features from Hainsworth PhD
struct PV_HainsworthFoote : public PV_OnsetDetectionBase
{
float m_prevNorm;
int m_5kindex,m_30Hzindex;
};
//for time domain onset detection/RMS
struct RunningSum : public Unit {
int msamp, mcount;
float msum,msum2;
//float mmeanmult;
float* msquares;
};
extern "C"
{
void PV_OnsetDetectionBase_Ctor(PV_OnsetDetectionBase *unit);
void PV_OnsetDetectionBase_Dtor(PV_OnsetDetectionBase *unit);
void PV_JensenAndersen_Ctor(PV_JensenAndersen *unit);
void PV_JensenAndersen_Dtor(PV_JensenAndersen *unit);
void PV_JensenAndersen_next(PV_JensenAndersen *unit, int inNumSamples);
void PV_HainsworthFoote_Ctor(PV_HainsworthFoote *unit);
void PV_HainsworthFoote_Dtor(PV_HainsworthFoote *unit);
void PV_HainsworthFoote_next(PV_HainsworthFoote *unit, int inNumSamples);
void RunningSum_next_k(RunningSum *unit, int inNumSamples);
void RunningSum_Ctor(RunningSum* unit);
void RunningSum_Dtor(RunningSum* unit);
}
#define PV_FEAT_GET_BUF \
uint32 ibufnum = (uint32)fbufnum; \
int bufOK = 1; \
World *world = unit->mWorld; \
SndBuf *buf; \
if (ibufnum >= world->mNumSndBufs) { \
int localBufNum = ibufnum - world->mNumSndBufs; \
Graph *parent = unit->mParent; \
if(localBufNum <= parent->localBufNum) { \
buf = parent->mLocalSndBufs + localBufNum; \
} else { \
bufOK = 0; \
buf = world->mSndBufs; \
if(unit->mWorld->mVerbosity > -1){ Print("FFT Ctor error: Buffer number overrun: %i\n", ibufnum); } \
} \
} else { \
buf = world->mSndBufs + ibufnum; \
} \
int numbins = buf->samples - 2 >> 1; \
if (!buf->data) { \
if(unit->mWorld->mVerbosity > -1){ Print("FFT Ctor error: Buffer %i not initialised.\n", ibufnum); } \
bufOK = 0; \
} \
void PV_OnsetDetectionBase_Ctor(PV_OnsetDetectionBase *unit)
{
float fbufnum = ZIN0(0);
PV_FEAT_GET_BUF
unit->m_numbins = buf->samples - 2 >> 1;
int insize = unit->m_numbins * sizeof(float);
if(bufOK) {
unit->m_prevframe = (float*)RTAlloc(unit->mWorld, insize);
memset(unit->m_prevframe, 0, insize);
}
unit->m_waiting=0;
unit->m_waitSamp=0;
unit->m_waitLen=0;
}
void PV_OnsetDetectionBase_Dtor(PV_OnsetDetectionBase *unit)
{
if(unit->m_prevframe)
RTFree(unit->mWorld, unit->m_prevframe);
}
void PV_JensenAndersen_Ctor(PV_JensenAndersen *unit)
{
PV_OnsetDetectionBase_Ctor(unit);
unit->m_hfc= 0.0;
unit->m_hfe= 0.0;
unit->m_sf= 0.0;
unit->m_sc= 0.0;
unit->m_fourkindex= (int)(4000.0/(unit->mWorld->mSampleRate))*(unit->m_numbins);
SETCALC(PV_JensenAndersen_next);
}
void PV_JensenAndersen_Dtor(PV_JensenAndersen *unit)
{
PV_OnsetDetectionBase_Dtor(unit);
}
void PV_JensenAndersen_next(PV_JensenAndersen *unit, int inNumSamples)
{
float outval=0.0;
float fbufnum = ZIN0(0);
if(unit->m_waiting==1) {
unit->m_waitSamp+=inNumSamples;
if(unit->m_waitSamp>=unit->m_waitLen)
unit->m_waiting=0;
}
if (!(fbufnum < 0.f))
//if buffer ready to process
{
PV_FEAT_GET_BUF
SCPolarBuf *p = ToPolarApx(buf);
//four spectral features useful for onset detection according to Jensen/Andersen
float magsum=0.0, magsumk=0.0, magsumkk=0.0, sfsum=0.0, hfesum=0.0;
float * q= unit->m_prevframe;
int k4= unit->m_fourkindex;
//ignores dc, nyquist
for (int i=0; i<numbins; ++i) {
float mag= ((p->bin[i]).mag);
int k= i+1;
float qmag= q[i];
magsum+=mag;
magsumk+=k*mag;
magsumkk+=k*k*mag;
sfsum+= fabs(mag- (qmag));
if(i>k4) hfesum+=mag;
}
float binmult= 1.f/numbins;
//normalise
float sc= (magsumk/magsum)*binmult;
float hfe= hfesum*binmult;
float hfc= magsumkk*binmult*binmult*binmult;
float sf= sfsum*binmult;
//printf("sc %f hfe %f hfc %f sf %f \n",sc, hfe, hfc, sf);
//if(sc<0.0) sc=0.0;
//if(hfe<0.0) hfe=0.0;
//if(hfc<0.0) hfc=0.0;
//if(sf<0.0) sf=0.0;
//ratio of current to previous frame perhaps better indicator than first derivative difference
float scdiff= sc-(unit->m_sc);
float hfediff= hfe-(unit->m_hfe);
float hfcdiff= hfc-(unit->m_hfc);
float sfdiff= sf-(unit->m_sf);
//store as old frame values for taking difference
unit->m_sc=sc;
unit->m_hfe=hfe;
unit->m_hfc=hfc;
unit->m_sf=sf;
//printf("sc %f hfe %f hfc %f sf %f \n",sc, hfe, hfc, sf);
//printf("sc %f hfe %f hfc %f sf %f \n",scdiff, hfediff, hfcdiff, sfdiff);
//does this trigger?
//may need to take derivatives across previous frames by storing old values
float sum = (ZIN0(1)*scdiff)+(ZIN0(2)*hfediff)+(ZIN0(3)*hfcdiff)+(ZIN0(4)*sfdiff);
//printf("sum %f thresh %f \n",sum, ZIN0(7));
//if over threshold, may also impose a wait here
if(sum>ZIN0(5) && (unit->m_waiting==0)) {//printf("bang! \n");
outval=1.0;
unit->m_waiting=1;
unit->m_waitSamp=inNumSamples;
unit->m_waitLen=(int)(ZIN0(6)*(world->mSampleRate));
}
//take copy of this frame's magnitudes as prevframe
for (int i=0; i<numbins; ++i)
q[i]= p->bin[i].mag;
}
Fill(inNumSamples, &ZOUT0(0), outval);
}
void PV_HainsworthFoote_Ctor(PV_HainsworthFoote *unit)
{
PV_OnsetDetectionBase_Ctor(unit);
World *world = unit->mWorld;
unit->m_5kindex= (int)((5000.0/(world->mSampleRate))*(unit->m_numbins));
unit->m_30Hzindex= (int)((30.0/(world->mSampleRate))*(unit->m_numbins));
unit->m_prevNorm= 1.0;
//unit->m_5kindex, unit->m_30Hzindex,
//printf("numbins %d sr %d \n", unit->m_numbins, world->mSampleRate);
//printf("test %d sr %f 5k %d 30Hz %d\n", unit->m_numbins, world->mSampleRate, unit->m_5kindex, unit->m_30Hzindex);
SETCALC(PV_HainsworthFoote_next);
}
void PV_HainsworthFoote_Dtor(PV_HainsworthFoote *unit)
{
PV_OnsetDetectionBase_Dtor(unit);
}
static const float lmult= 1.442695040889; //loge(2) reciprocal
void PV_HainsworthFoote_next(PV_HainsworthFoote *unit, int inNumSamples)
{
float outval=0.0;
float fbufnum = ZIN0(0);
if(unit->m_waiting==1)
{
unit->m_waitSamp+=inNumSamples;
if(unit->m_waitSamp>=unit->m_waitLen) {unit->m_waiting=0;}
}
if (!(fbufnum < 0.f))
//if buffer ready to process
{
PV_FEAT_GET_BUF
SCPolarBuf *p = ToPolarApx(buf);
float dnk, prevmag, mkl=0.0, footesum=0.0, norm=0.0;
float * q= unit->m_prevframe;
int k5= unit->m_5kindex;
int h30= unit->m_30Hzindex;
for (int i=0; i<numbins; ++i) {
float mag= ((p->bin[i]).mag);
float qmag= q[i];
if(i>=h30 && i<k5) {
prevmag= qmag;
//avoid divide by zero
if(prevmag<0.0001) prevmag=0.0001;
//no log2 in maths library, so use log2(x)= log(x)/log(2) where log is to base e
//could just use log and ignore scale factor but hey let's stay accurate to the source for now
dnk= log(mag/prevmag)*lmult;
if(dnk>0.0) mkl+=dnk;
}
norm+=mag*mag;
footesum+=mag*qmag;
}
mkl= mkl/(k5-h30);
//Foote measure- footediv will be zero initially
float footediv= ((sqrt(norm))*(sqrt(unit->m_prevNorm)));
if(footediv<0.0001f)
footediv=0.0001f;
float foote= 1.0- (footesum/footediv); //1.0 - similarity
//printf("mkl %f foote %f \n",mkl, foote);
unit->m_prevNorm= norm;
float sum = (ZIN0(1)*mkl)+(ZIN0(2)*foote);
//printf("sum %f thresh %f \n",sum, ZIN0(7));
//if over threshold, may also impose a 50mS wait here
if(sum>ZIN0(3) && (unit->m_waiting==0)) {
outval=1.0;
unit->m_waiting=1;
unit->m_waitSamp=inNumSamples;
unit->m_waitLen=(int)(ZIN0(4)*(unit->mWorld->mSampleRate));
}
//take copy of this frame's magnitudes as prevframe
for (int i=0; i<numbins; ++i)
q[i]= p->bin[i].mag;
}
Fill(inNumSamples, &ZOUT0(0), outval);
}
void RunningSum_Ctor( RunningSum* unit )
{
SETCALC(RunningSum_next_k);
unit->msamp= (int) ZIN0(1);
//unit->mmeanmult= 1.0f/(unit->msamp);
unit->msum=0.0f;
unit->msum2=0.0f;
unit->mcount=0; //unit->msamp-1;
unit->msquares= (float*)RTAlloc(unit->mWorld, unit->msamp * sizeof(float));
//initialise to zeroes
for(int i=0; i<unit->msamp; ++i)
unit->msquares[i]=0.f;
}
void RunningSum_Dtor(RunningSum *unit)
{
RTFree(unit->mWorld, unit->msquares);
}
//RMS is easy because convolution kernel can be updated just by deleting oldest sample and adding newest-
//half hanning window convolution etc requires updating values for all samples in memory on each iteration
void RunningSum_next_k( RunningSum *unit, int inNumSamples )
{
float *in = ZIN(0);
float *out = ZOUT(0);
int count= unit->mcount;
int samp= unit->msamp;
float * data= unit->msquares;
float sum= unit->msum;
//avoids floating point error accumulation over time- thanks to Ross Bencina
float sum2= unit->msum2;
int todo=0;
int done=0;
while(done<inNumSamples) {
todo= sc_min(inNumSamples-done,samp-count);
for(int j=0;j<todo;++j) {
sum -=data[count];
float next= ZXP(in);
data[count]= next;
sum += next;
sum2 +=next;
ZXP(out) = sum;
++count;
}
done+=todo;
if( count == samp ) {
count = 0;
sum = sum2;
sum2 = 0;
}
}
unit->mcount =count;
unit->msum = sum;
unit->msum2 = sum2;
}
void initFeatureDetectors(InterfaceTable *it)
{
DefineDtorUnit(PV_JensenAndersen);
DefineDtorUnit(PV_HainsworthFoote);
DefineDtorUnit(RunningSum);
}
|