File: PV_ThirdParty.cpp

package info (click to toggle)
supercollider 1%3A3.4.5-1wheezy1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 26,972 kB
  • sloc: cpp: 116,645; lisp: 64,914; ansic: 10,725; python: 3,548; perl: 766; ruby: 487; sh: 152; makefile: 117; xml: 13
file content (113 lines) | stat: -rw-r--r-- 2,808 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
/*
	SuperCollider real time audio synthesis system
    Copyright (c) 2002 James McCartney. All rights reserved.
	http://www.audiosynth.com

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301  USA
*/

//third party Phase Vocoder UGens


#include "FFT_UGens.h"


extern "C"
{
	void PV_ConformalMap_Ctor(PV_Unit *unit);
	void PV_ConformalMap_next(PV_Unit *unit, int inNumSamples);
}

SCPolarBuf* ToPolarApx(SndBuf *buf)
{
	if (buf->coord == coord_Complex) {
		SCComplexBuf* p = (SCComplexBuf*)buf->data;
		int numbins = buf->samples - 2 >> 1;
		for (int i=0; i<numbins; ++i) {
			p->bin[i].ToPolarApxInPlace();
		}
		buf->coord = coord_Polar;
	}
	return (SCPolarBuf*)buf->data;
}

SCComplexBuf* ToComplexApx(SndBuf *buf)
{
	if (buf->coord == coord_Polar) {
		SCPolarBuf* p = (SCPolarBuf*)buf->data;
		int numbins = buf->samples - 2 >> 1;
		for (int i=0; i<numbins; ++i) {
			p->bin[i].ToComplexApxInPlace();
		}
		buf->coord = coord_Complex;
	}
	return (SCComplexBuf*)buf->data;
}



void PV_ConformalMap_Ctor(PV_Unit *unit)
{
	SETCALC(PV_ConformalMap_next);
	ZOUT0(0) = ZIN0(0);
}


void PV_ConformalMap_next(PV_Unit *unit, int inNumSamples)
{
	PV_GET_BUF

	SCComplexBuf *p = ToComplexApx(buf);

	float real2 = ZIN0(1);
	float imag2 = ZIN0(2);

	for (int i=0; i<numbins; ++i) {
		float real1 = p->bin[i].real;
		float imag1 = p->bin[i].imag;

		//apply conformal map z-> z-a/(1-za*) where z is the existing complex number in the bin and a is defined by inputs 1 and 2
		float numr= real1-real2;
		float numi= imag1-imag2;
		float denomr= 1.f - (real1*real2+imag1*imag2);
		float denomi= (real1*imag2- real2*imag1);

		numr= numr*denomr+numi*denomi;
		numi= numi*denomr-numr*denomi;

		//squared modulus
		denomr= denomr*denomr+denomi*denomi;

		//avoid possible divide by zero
		if(denomr<0.001f) denomr=0.001f;
		denomr=1.f/denomr;

		p->bin[i].real = numr*denomr;
		p->bin[i].imag = numi*denomr;
	}

}


#define DefinePVUnit(name) \
	(*ft->fDefineUnit)(#name, sizeof(PV_Unit), (UnitCtorFunc)&name##_Ctor, 0, 0);


//void initPV_ThirdParty(InterfaceTable *it);
void initPV_ThirdParty(InterfaceTable *it)
{
	DefinePVUnit(PV_ConformalMap);
}