File: SC_Complex.cpp

package info (click to toggle)
supercollider 1%3A3.4.5-1wheezy1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 26,972 kB
  • sloc: cpp: 116,645; lisp: 64,914; ansic: 10,725; python: 3,548; perl: 766; ruby: 487; sh: 152; makefile: 117; xml: 13
file content (148 lines) | stat: -rw-r--r-- 3,780 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/*
	SuperCollider real time audio synthesis system
    Copyright (c) 2002 James McCartney. All rights reserved.
	http://www.audiosynth.com

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301  USA
*/


#include "SC_Complex.h"
#include "SC_Constants.h"
#include "SC_Samp.h"
#include <math.h>

////////////////////////////////////////////////////////////////////////////////

const int32 kPolarLUTSize = 2049;
const int32 kPolarLUTSize2 = kPolarLUTSize >> 1;
const double kSinePhaseScale = (double)kSineSize / twopi;
float gMagLUT[kPolarLUTSize];
float gPhaseLUT[kPolarLUTSize];

void BuildPolarLUT();
void BuildPolarLUT()
{
	double rPolarLUTSize2 = 1. / kPolarLUTSize2;
	for (int i=0; i < kPolarLUTSize; ++i) {
		double slope = (i - kPolarLUTSize2) * rPolarLUTSize2;
		double angle = atan(slope);
		gPhaseLUT[i] = (float)angle;
		gMagLUT[i] = 1.f / (float)cos(angle);
	}
}

Polar Complex::ToPolar()
{
	return Polar(hypot(imag, real), atan2(imag, real));
}

Complex Polar::ToComplex()
{
	return Complex(mag * cos(phase), mag * sin(phase));
}

/*
float fhypotx(float real, float imag);
float fhypotx(float real, float imag)
{

	int32 index;
	float absreal = fabs(real);
	float absimag = fabs(imag);
	float slope;
	if (absreal > absimag) {
		slope = imag/real;
		index = kPolarLUTSize2 + kPolarLUTSize2 * slope;
		return gMagLUT[index] * absreal;
	} else {
		slope = real/imag;
		index = kPolarLUTSize2 + kPolarLUTSize2 * slope;
		return gMagLUT[index] * absimag;
	}
}
*/

/**
* Converts cartesian to polar representation, using lookup tables.
* Note: in this implementation the phase values returned lie in the range [-pi/4, 7pi/4]
* rather than the more conventional [0, 2pi] or [-pi, pi].
*/
Polar Complex::ToPolarApx()
{
	int32 index;
	float absreal = fabs(real);
	float absimag = fabs(imag);
	float mag, phase, slope;
	if (absreal > absimag) {
		slope = imag/real;
		index = (int32)(kPolarLUTSize2 + kPolarLUTSize2 * slope);
		mag = gMagLUT[index] * absreal;
		phase = gPhaseLUT[index];
		if (real > 0) {
			return Polar(mag, phase);
		} else {
			return Polar(mag, (float)(pi + phase));
		}
	} else {
		slope = real/imag;
		index = (int32)(kPolarLUTSize2 + kPolarLUTSize2 * slope);
		mag = gMagLUT[index] * absimag;
		phase = gPhaseLUT[index];
		if (imag > 0) {
			return Polar(mag, (float)(pi2 - phase));
		} else {
			return Polar(mag, (float)(pi32 - phase));
		}
	}
}

void Complex::ToPolarInPlace()
{
	Polar polar = ToPolar();
	real = polar.mag;
	imag = polar.phase;
}

void Polar::ToComplexInPlace()
{
	Complex complx = ToComplex();
	mag = complx.real;
	phase = complx.imag;
}

Complex Polar::ToComplexApx()
{
	uint32 sinindex = (int32)(kSinePhaseScale * phase) & kSineMask;
	uint32 cosindex = (sinindex + (kSineSize>>2)) & kSineMask;
	return Complex(mag * gSine[cosindex], mag * gSine[sinindex]);
}

void Complex::ToPolarApxInPlace()
{
	Polar polar = ToPolarApx();
	real = polar.mag;
	imag = polar.phase;
}

void Polar::ToComplexApxInPlace()
{
	Complex complx = ToComplexApx();
	mag = complx.real;
	phase = complx.imag;
}

////////////////////////////////////////////////////////////////////////////////