File: Resonz.schelp

package info (click to toggle)
supercollider 1%3A3.6.6~repack-2-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 23,792 kB
  • ctags: 25,269
  • sloc: cpp: 177,129; lisp: 63,421; ansic: 11,297; python: 1,787; perl: 766; yacc: 311; sh: 286; lex: 181; ruby: 173; makefile: 168; xml: 13
file content (68 lines) | stat: -rw-r--r-- 1,157 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
class:: Resonz
summary:: Resonant filter.
related:: Classes/Formlet, Classes/RHPF, Classes/RLPF, Classes/Ringz
categories::  UGens>Filters>Linear


Description::

A two pole resonant filter with zeroes at

code::
z = ±1
::


Based on  emphasis::K. Steiglitz,  "A Note on Constant-Gain Digital Resonators", Computer Music Journal, vol 18, no. 4, pp. 8-10, Winter 1994::.


classmethods::

method::ar, kr

argument::in

The input signal.


argument::freq

Resonant frequency in Hertz.


argument::bwr

Bandwidth ratio (reciprocal of Q). rq = bandwidth / centerFreq.


The reciprocal of Q is used rather than Q because it saves a
divide operation inside the unit generator.


argument::mul

Output will be multiplied by this value.


argument::add

This value will be added to the output.


Examples::

code::

{ Resonz.ar(WhiteNoise.ar(0.5), 2000, 0.1) }.play

// modulate frequency
{ Resonz.ar(WhiteNoise.ar(0.5), XLine.kr(1000,8000,10), 0.05) }.play

// modulate bandwidth
{ Resonz.ar(WhiteNoise.ar(0.5), 2000, XLine.kr(1, 0.001, 8)) }.play

// modulate bandwidth opposite direction
{ Resonz.ar(WhiteNoise.ar(0.5), 2000, XLine.kr(0.001, 1, 8)) }.play

::