1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
Complex : Number {
var <>real, <>imag;
*new { arg real, imag;
^super.newCopyArgs(real, imag);
}
+ { arg aNumber, adverb;
if ( aNumber.isNumber, {
^Complex.new(real + aNumber.real, imag + aNumber.imag)
},{
^aNumber.performBinaryOpOnComplex('+', this, adverb)
});
}
- { arg aNumber, adverb;
if ( aNumber.isNumber, {
^Complex.new(real - aNumber.real, imag - aNumber.imag)
},{
^aNumber.performBinaryOpOnComplex('-', this, adverb)
});
}
* { arg aNumber, adverb;
if ( aNumber.isNumber, {
^Complex.new(
// these are implemented as additional message sends so that UGens can
// optimize the 6 operations down to 2 UGen instances.
(real * aNumber.real) - (imag * aNumber.imag),
(real * aNumber.imag) + (imag * aNumber.real)
)
},{
^aNumber.performBinaryOpOnComplex('*', this, adverb)
});
}
/ { arg aNumber, adverb;
var denom, yr, yi;
if ( aNumber.isNumber, {
yr = aNumber.real;
yi = aNumber.imag;
denom = 1.0 / (yr * yr + (yi * yi));
^Complex.new(
((real * yr) + (imag * yi)) * denom,
((imag * yr) - (real * yi)) * denom)
},{
^aNumber.performBinaryOpOnComplex('/', this, adverb)
});
}
< { arg aNumber, adverb;
if ( aNumber.isNumber, {
^real < aNumber.real
},{
^aNumber.performBinaryOpOnComplex('<', this, adverb)
});
}
== { arg aNumber, adverb;
if ( aNumber.isNumber, {
^real == aNumber.real and: { imag == aNumber.imag }
},{
^aNumber.performBinaryOpOnComplex('==', this, adverb)
});
}
hash {
^real.hash << 1 bitXor: imag.hash
}
// double dispatch
performBinaryOpOnSimpleNumber { arg aSelector, aNumber, adverb;
^aNumber.asComplex.perform(aSelector, this, adverb)
}
performBinaryOpOnSignal { arg aSelector, aSignal, adverb;
^aSignal.asComplex.perform(aSelector, this)
}
performBinaryOpOnComplex { arg aSelector, aNumber, adverb;
BinaryOpFailureError(this, aSelector, [aNumber, adverb]).throw;
}
performBinaryOpOnUGen { arg aSelector, aUGen, adverb;
^aUGen.asComplex.perform(aSelector, this, adverb)
}
neg { ^Complex.new(real.neg, imag.neg) }
conjugate { ^Complex.new(real, imag.neg) }
squared { ^this * this }
cubed { ^this * this * this }
exp { ^exp(real) * Complex.new(cos(imag), sin(imag)) }
pow { arg aNumber; // return(this ** aNumber)
// Notation below:
// t=this, p=power, i=sqrt(-1)
// Derivation:
// t ** p = exp(p*log(t)) = ... = r*exp(i*a)
var p_real, p_imag, t_mag, t_phase, t_maglog;
var mag, phase;
aNumber = aNumber.asComplex;
p_real = aNumber.real;
p_imag = aNumber.imag;
if(p_real == 0.0 and: { p_imag == 0 }) { ^Complex(1.0, 0.0) };
if(p_imag == 0.0 and: { imag == 0.0 } and: { real > 0.0 }) {
^Complex(real ** p_real, 0.0)
};
t_mag = this.magnitude;
if(t_mag == 0.0) { ^Complex(0.0, 0.0) };
t_maglog = 0.5 * log(t_mag);
t_phase = this.phase;
mag = exp((p_real * t_maglog) - (p_imag * t_phase));
phase = (p_imag * t_maglog) + (p_real * t_phase);
^Complex(mag * cos(phase), mag * sin(phase))
}
magnitude { ^hypot(real, imag) }
abs { ^hypot(real, imag) }
rho { ^hypot(real, imag) }
magnitudeApx { ^hypotApx(real, imag) }
angle { ^atan2(imag, real) }
phase { ^atan2(imag, real) }
theta { ^atan2(imag, real) }
coerce { arg aNumber; ^aNumber.asComplex }
round { arg aNumber = 1.0;
^Complex(real.round(aNumber), imag.round(aNumber))
}
asInteger { ^real.asInteger }
asFloat { ^real.asFloat }
asComplex { ^this }
asPolar { ^Polar.new(this.rho, this.theta) }
asPoint { ^Point.new(this.real, this.imag) }
printOn { arg stream;
stream << "Complex( " << real << ", " << imag << " )";
}
}
|