1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
Signal[float] : FloatArray {
*sineFill { arg size, amplitudes, phases;
^Signal.newClear(size).sineFill(amplitudes, phases).normalize
}
*chebyFill { arg size, amplitudes, normalize=true;
^Signal.newClear(size).chebyFill(amplitudes, normalize); //.normalizeTransfer //shouldn't normalize by default!
}
*hammingWindow { arg size, pad=0;
if (pad == 0, {
^this.newClear(size).fill(0.5).addSine(1, 0.39, -0.5pi);
},{
^this.newClear(size-pad).fill(0.5).addSine(1, 0.39, -0.5pi) ++ this.newClear(pad);
});
}
*hanningWindow { arg size, pad=0;
if (pad == 0, {
^this.newClear(size).fill(0.5).addSine(1, 0.5, -0.5pi);
},{
^this.newClear(size-pad).fill(0.5).addSine(1, 0.5, -0.5pi) ++ this.newClear(pad);
});
}
*welchWindow { arg size, pad=0;
if (pad == 0, {
^this.newClear(size).addSine(0.5, 1, 0);
},{
^this.newClear(size-pad).addSine(0.5, 1, 0) ++ this.newClear(pad);
});
}
*rectWindow { arg size, pad=0;
if (pad == 0, {
^this.newClear(size).fill(1.0);
},{
^this.newClear(size-pad).fill(1.0) ++ this.newClear(pad);
});
}
*readNew { arg file;
^file.readAllSignal;
}
// operations
fill { arg val; _SignalFill ^this.primitiveFailed }
scale { arg scale; _SignalScale ^this.primitiveFailed }
offset { arg offset; _SignalOffset ^this.primitiveFailed }
asWavetable {
// Interpolating oscillators require wavetables in a special format.
// This method returns a wavetable in that format.
_SignalAsWavetable;
^this.primitiveFailed
}
asWavetableNoWrap {
// Shaper requires wavetables without wrap.
// This method returns a wavetable in that format.
//To generate size N wavetable need N/2+1 signal values rather than N/2
//because Buffer's add_wchebyshev calculates N/2+1 values whilst
//Signal's _SignalAddChebyshev calculates N/2!
var newsig = Signal.newClear((this.size-1)*2);
var next, cur;
cur= this[0];
(this.size-1).do{|i|
var index= 2*i;
next= this[i+1];
newsig[index]= 2*cur -next;
newsig[index+1]= next-cur;
cur=next;
};
^newsig
}
peak { _SignalPeak; ^this.primitiveFailed }
normalize { arg beginSamp=0, endSamp;
_SignalNormalize;
^this.primitiveFailed
}
normalizeTransfer {
_SignalNormalizeTransferFn;
^this.primitiveFailed
}
invert { arg beginSamp=0, endSamp;
_SignalInvert;
^this.primitiveFailed
}
reverse { arg beginSamp=0, endSamp;
_SignalReverse;
^this.primitiveFailed
}
fade { arg beginSamp=0, endSamp, beginLevel=0.0, endLevel=1.0;
_SignalFade;
^this.primitiveFailed
}
rotate { arg n=1;
_SignalRotate
^this.primitiveFailed
}
zeroPad { arg minSize;
var size = max(minSize ? 0, this.size).nextPowerOfTwo;
^this ++ Signal.newClear(size - this.size);
}
integral { _SignalIntegral; ^this.primitiveFailed }
overDub { arg aSignal, index=0;
_SignalOverDub
// add a signal to myself starting at the index
// if the other signal is too long only the first part is overdubbed
^this.primitiveFailed
}
overWrite { arg aSignal, index=0;
_SignalOverWrite
// write a signal to myself starting at the index
// if the other signal is too long only the first part is overwritten
^this.primitiveFailed
}
play { arg loop=false, mul=0.2, numChannels=1, server;
var buf;
buf = Buffer.sendCollection(server ? Server.default, this, numChannels, -1, { buf.play(loop, mul); });
^buf
}
waveFill { arg function, start = 0.0, end = 1.0;
var i = 0, step, size, val, x;
// evaluate a function for every sample over the interval from
// start to end.
size = this.size;
if (size <= 0, { ^this });
x = start;
step = (end - start) / size;
while ({ i < size }, {
val = function.value(x, this.at(i), i);
this.put(i, val);
x = x + step;
i = i + 1;
});
^this
}
addSine { arg harmonicNumber = 1, amplitude = 1.0, phase = 0.0;
_SignalAddHarmonic
^this.primitiveFailed
}
sineFill { arg amplitudes, phases;
this.fill(0.0);
if (phases.isNil, { phases = #[0]; });
amplitudes.do({ arg amp, i; this.addSine(i+1, amp, phases @@ i) });
}
sineFill2 { arg list;
this.fill(0.0);
list.do({ arg item, i;
var harm, amp, phase;
# harm, amp, phase = item;
this.addSine(harm, amp ? 1.0, phase ? 0.0);
});
}
addChebyshev { arg harmonicNumber = 1, amplitude = 1.0;
_SignalAddChebyshev
^this.primitiveFailed
}
chebyFill { arg amplitudes, normalize=true;
this.fill(0.0);
amplitudes.do({ arg amp, i; this.addChebyshev(i+1, amp); if(i%4==1,{this.offset(1)}); if(i%4==3,{this.offset(-1)}); }); //corrections for JMC DC offsets, as per Buffer:cheby
if(normalize,{this.normalizeTransfer}); //no automatic cheby
}
//old version
chebyFill_old { arg amplitudes;
this.fill(0.0);
amplitudes.do({ arg amp, i; this.addChebyshev(i+1, amp) });
this.normalizeTransfer
}
*fftCosTable { arg fftsize;
^this.newClear((fftsize/4) + 1).fftCosTable
}
fftCosTable {
var harm;
harm = this.size / ((this.size - 1) * 4);
this.addSine(harm, 1, 0.5pi);
}
fft { arg imag, cosTable;
// argCosTable must contain 1/4 cycle of a cosine (use fftCosTable)
// fftsize is the next greater power of two than the receiver's length
_Signal_FFT
^this.primitiveFailed
}
ifft { arg imag, cosTable;
// argCosTable must contain 1/4 cycle of a cosine (use fftCosTable)
// fftsize is the next greater power of two than the receiver's length
_Signal_IFFT
^this.primitiveFailed
}
neg { _Neg; ^this.primitiveFailed }
abs { _Abs; ^this.primitiveFailed }
sign { _Sign; ^this.primitiveFailed }
squared { _Squared; ^this.primitiveFailed }
cubed { _Cubed; ^this.primitiveFailed }
sqrt { _Sqrt; ^this.primitiveFailed }
exp { _Exp; ^this.primitiveFailed }
//reciprocal { _Recip; ^this.primitiveFailed }
//midicps { _MIDICPS; ^this.primitiveFailed }
//cpsmidi { _CPSMIDI; ^this.primitiveFailed }
//midiratio { _MIDIRatio; ^this.primitiveFailed }
//ratiomidi { _RatioMIDI; ^this.primitiveFailed }
//ampdb { _AmpDb; ^this.primitiveFailed }
//dbamp { _DbAmp; ^this.primitiveFailed }
//octcps { _OctCPS; ^this.primitiveFailed }
//cpsoct { _CPSOct; ^this.primitiveFailed }
log { _Log; ^this.primitiveFailed }
log2 { _Log2; ^this.primitiveFailed }
log10 { _Log10; ^this.primitiveFailed }
sin { _Sin; ^this.primitiveFailed }
cos { _Cos; ^this.primitiveFailed }
tan { _Tan; ^this.primitiveFailed }
asin { _ArcSin; ^this.primitiveFailed }
acos { _ArcCos; ^this.primitiveFailed }
atan { _ArcTan; ^this.primitiveFailed }
sinh { _SinH; ^this.primitiveFailed }
cosh { _CosH; ^this.primitiveFailed }
tanh { _TanH; ^this.primitiveFailed }
distort { _Distort; ^this.primitiveFailed }
softclip { _SoftClip; ^this.primitiveFailed }
rectWindow { _RectWindow; ^this.primitiveFailed }
hanWindow { _HanWindow; ^this.primitiveFailed }
welWindow { _WelchWindow; ^this.primitiveFailed }
triWindow { _TriWindow; ^this.primitiveFailed }
scurve { _SCurve; ^this.primitiveFailed }
ramp { _Ramp; ^this.primitiveFailed }
+ { arg aNumber; _Add; ^aNumber.performBinaryOpOnSignal('+', this) }
- { arg aNumber; _Sub; ^aNumber.performBinaryOpOnSignal('-', this) }
* { arg aNumber; _Mul; ^aNumber.performBinaryOpOnSignal('*', this) }
/ { arg aNumber; _FDiv; ^aNumber.performBinaryOpOnSignal('/', this) }
mod { arg aNumber; _Mod; ^aNumber.performBinaryOpOnSignal('mod', this) }
div { arg aNumber; _IDiv; ^aNumber.performBinaryOpOnSignal('div', this) }
pow { arg aNumber; _Pow; ^aNumber.performBinaryOpOnSignal('pow', this) }
min { arg aNumber; _Min; ^aNumber.performBinaryOpOnSignal('min', this) }
max { arg aNumber; _Max; ^aNumber.performBinaryOpOnSignal('max', this) }
ring1 { arg aNumber; _Ring1; ^aNumber.performBinaryOpOnSignal('ring1', this) }
ring2 { arg aNumber; _Ring2; ^aNumber.performBinaryOpOnSignal('ring2', this) }
ring3 { arg aNumber; _Ring3; ^aNumber.performBinaryOpOnSignal('ring3', this) }
ring4 { arg aNumber; _Ring4; ^aNumber.performBinaryOpOnSignal('ring4', this) }
difsqr { arg aNumber; _DifSqr; ^aNumber.performBinaryOpOnSignal('difsqr', this) }
sumsqr { arg aNumber; _SumSqr; ^aNumber.performBinaryOpOnSignal('sumsqr', this) }
sqrsum { arg aNumber; _SqrSum; ^aNumber.performBinaryOpOnSignal('sqrsum', this) }
sqrdif { arg aNumber; _SqrDif; ^aNumber.performBinaryOpOnSignal('sqrdif', this) }
absdif { arg aNumber; _AbsDif; ^aNumber.performBinaryOpOnSignal('absdif', this) }
thresh { arg aNumber; _Thresh; ^aNumber.performBinaryOpOnSignal('thresh', this) }
amclip { arg aNumber; _AMClip; ^aNumber.performBinaryOpOnSignal('amclip', this) }
scaleneg { arg aNumber; _ScaleNeg; ^aNumber.performBinaryOpOnSignal('scaleneg', this) }
clip2 { arg aNumber=1; _Clip2; ^aNumber.performBinaryOpOnSignal('clip2', this) }
fold2 { arg aNumber; _Fold2; ^aNumber.performBinaryOpOnSignal('fold2', this) }
wrap2 { arg aNumber; _Wrap2; ^aNumber.performBinaryOpOnSignal('wrap2', this) }
excess { arg aNumber; _Excess; ^aNumber.performBinaryOpOnSignal('excess', this) }
firstArg { arg aNumber; _FirstArg; ^aNumber.performBinaryOpOnSignal('firstArg', this) }
== { arg aNumber; _EQ; ^aNumber.performBinaryOpOnSignal('==', this) }
!= { arg aNumber; _NE; ^aNumber.performBinaryOpOnSignal('!=', this) }
clip { arg lo, hi; _ClipSignal; ^this.primitiveFailed }
wrap { arg lo, hi; _WrapSignal; ^this.primitiveFailed }
fold { arg lo, hi; _FoldSignal; ^this.primitiveFailed }
asInteger { _AsInt; ^this.primitiveFailed }
asFloat { _AsFloat; ^this.primitiveFailed }
asComplex { ^Complex.new(this, 0.0) }
asSignal { ^this }
// complex support
real { ^this }
imag { ^0.0 }
//PRIVATE:
performBinaryOpOnSignal { arg aSelector, aNumber, adverb;
BinaryOpFailureError(this, aSelector, [aNumber, adverb]).throw;
}
}
Wavetable[float] : FloatArray {
// the only way to make a Wavetable is by Signal::asWavetable
*new {
^this.shouldNotImplement(thisMethod)
}
*newClear {
^this.shouldNotImplement(thisMethod)
}
*sineFill { arg size, amplitudes, phases;
^Signal.sineFill(size, amplitudes, phases).asWavetable
}
//size must be N/2+1 for N power of two; N is eventual size of wavetable
*chebyFill { arg size, amplitudes, normalize=true;
^Signal.chebyFill(size, amplitudes, normalize).asWavetableNoWrap; //asWavetable causes wrap here, problem
}
*chebyFill_old { arg size, amplitudes;
//this.deprecated(thisMethod, Buffer.findRespondingMethodFor(\cheby));
^Signal.chebyFill(size, amplitudes).asWavetable; //asWavetable causes wrap here, problem
}
asSignal {
_WavetableAsSignal
^this.primitiveFailed
}
blend { arg anotherWavetable, blendFrac=0.5;
^this.asSignal.blend(anotherWavetable.asSignal, blendFrac).asWavetable;
}
*readNew { arg file;
^file.readAllSignal.asWavetable;
}
write { arg path;
var file;
file = File.new(path, "wb");
if (file.notNil, {
file.write(this.asSignal);
file.close;
});
}
//libMenuAction { arg names;
// this.plot(names.last);
//}
}
|