1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
// avx double-precision vector class
//
// Copyright (C) 2011 Tim Blechmann
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING. If not, write to
// the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
// Boston, MA 02111-1307, USA.
#ifndef VEC_AVX_DOUBLE_HPP
#define VEC_AVX_DOUBLE_HPP
#include <algorithm>
#include <immintrin.h>
#include "detail/vec_math.hpp"
#include "vec_base.hpp"
#if defined(__GNUC__) && defined(NDEBUG)
#define always_inline inline __attribute__((always_inline))
#else
#define always_inline inline
#endif
#include "stdint.h"
namespace nova
{
template <>
struct vec<double>:
vec_base<double, __m256d, 4>
{
private:
typedef vec_base<double, __m256d, 4> base;
static const bool has_compare_bitmask = true;
public:
typedef double float_type;
static inline __m256d gen_sign_mask(void)
{
return set_bitmask(0x8000000000000000);
}
static inline __m256d gen_abs_mask(void)
{
return set_bitmask(0x7fffffffffffffff);
}
static inline __m256d set_bitmask(uint64_t mask)
{
union {
uint64_t i;
double d;
} u;
u.i = mask;
return _mm256_set1_pd(u.d);
}
static inline __m256d gen_one(void)
{
return _mm256_set1_pd(1.f);
}
static inline __m256d gen_05(void)
{
return _mm256_set1_pd(0.5f);
}
static inline __m256d gen_zero(void)
{
return _mm256_setzero_pd();
}
static inline __m256d gen_ones(void)
{
__m256d x = gen_zero();
__m256d ones = _mm256_cmp_pd(x, x, _CMP_EQ_OQ);
return ones;
}
vec(__m256d const & arg):
base(arg)
{}
public:
static const int size = 4;
static const int objects_per_cacheline = 64/sizeof(double);
static bool is_aligned(double* ptr)
{
return ((intptr_t)(ptr) & (intptr_t)(size * sizeof(double) - 1)) == 0;
}
/* @{ */
/** constructors */
vec(void)
{}
vec(double f)
{
set_vec(f);
}
vec(float f)
{
set_vec((double)f);
}
vec(vec const & rhs)
{
data_ = rhs.data_;
}
/* @} */
/* @{ */
/** io */
void load(const double * data)
{
data_ = _mm256_loadu_pd(data);
}
void load_aligned(const double * data)
{
data_ = _mm256_load_pd(data);
}
void load_first(const double * data)
{
clear();
data_ = _mm256_castpd128_pd256(_mm_load_sd(data));
}
void store(double * dest) const
{
_mm256_storeu_pd(dest, data_);
}
void store_aligned(double * dest) const
{
_mm256_store_pd(dest, data_);
}
void store_aligned_stream(double * dest) const
{
_mm256_stream_pd(dest, data_);
}
void clear(void)
{
data_ = gen_zero();
}
/* @} */
/* @{ */
/** element access */
void set_vec (double value)
{
data_ = _mm256_set1_pd(value);
}
double set_slope(double start, double slope)
{
double v1 = start + slope;
double v2 = v1 + slope;
double v3 = v2 + slope;
data_ = _mm256_set_pd(v3, v2, v1, start);
return slope + slope + slope + slope;
}
double set_exp(double start, double curve)
{
double v1 = start * curve;
double v2 = v1 * curve;
double v3 = v2 * curve;
data_ = _mm256_set_pd(v3, v2, v1, start);
return v3 * curve;
}
/* @} */
/* @{ */
/** arithmetic operators */
#define OPERATOR_ASSIGNMENT(op, opcode) \
vec & operator op(vec const & rhs) \
{ \
data_ = opcode(data_, rhs.data_);\
return *this;\
}
OPERATOR_ASSIGNMENT(+=, _mm256_add_pd)
OPERATOR_ASSIGNMENT(-=, _mm256_sub_pd)
OPERATOR_ASSIGNMENT(*=, _mm256_mul_pd)
OPERATOR_ASSIGNMENT(/=, _mm256_div_pd)
#undef OPERATOR_ASSIGNMENT
#define ARITHMETIC_OPERATOR(op, opcode) \
vec operator op(vec const & rhs) const \
{ \
return opcode(data_, rhs.data_); \
}
ARITHMETIC_OPERATOR(+, _mm256_add_pd)
ARITHMETIC_OPERATOR(-, _mm256_sub_pd)
ARITHMETIC_OPERATOR(*, _mm256_mul_pd)
ARITHMETIC_OPERATOR(/, _mm256_div_pd)
#undef ARITHMETIC_OPERATOR
NOVA_SIMD_DELEGATE_UNARY_TO_BASE(reciprocal)
NOVA_SIMD_DEFINE_MADD
#define RELATIONAL_OPERATOR(op, RELATION) \
vec operator op(vec const & rhs) const \
{ \
const __m256d one = gen_one(); \
return _mm256_and_pd(_mm256_cmp_pd(data_, rhs.data_, RELATION), one); \
}
RELATIONAL_OPERATOR(<, _CMP_LT_OS)
RELATIONAL_OPERATOR(<=, _CMP_LE_OS)
RELATIONAL_OPERATOR(>, _CMP_NLE_US)
RELATIONAL_OPERATOR(>=, _CMP_NLT_US)
RELATIONAL_OPERATOR(==, _CMP_EQ_OQ)
RELATIONAL_OPERATOR(!=, _CMP_NEQ_UQ)
#undef RELATIONAL_OPERATOR
/* @{ */
#define BITWISE_OPERATOR(op, opcode) \
vec operator op(vec const & rhs) const \
{ \
return opcode(data_, rhs.data_); \
}
BITWISE_OPERATOR(&, _mm256_and_pd)
BITWISE_OPERATOR(|, _mm256_or_pd)
BITWISE_OPERATOR(^, _mm256_xor_pd)
#undef BITWISE_OPERATOR
#define RELATIONAL_MASK_OPERATOR(op, RELATION) \
friend vec mask_##op(vec const & lhs, vec const & rhs) \
{ \
return _mm256_cmp_pd(lhs.data_, rhs.data_, RELATION); \
}
RELATIONAL_MASK_OPERATOR(lt, _CMP_LT_OS)
RELATIONAL_MASK_OPERATOR(le, _CMP_LE_OS)
RELATIONAL_MASK_OPERATOR(gt, _CMP_NLE_US)
RELATIONAL_MASK_OPERATOR(ge, _CMP_NLT_US)
RELATIONAL_MASK_OPERATOR(eq, _CMP_EQ_OQ)
RELATIONAL_MASK_OPERATOR(neq, _CMP_NEQ_UQ)
#undef RELATIONAL_MASK_OPERATOR
friend inline vec select(vec lhs, vec rhs, vec bitmask)
{
/* if bitmask is set, return value in rhs, else value in lhs */
return _mm256_blendv_pd(lhs.data_, rhs.data_, bitmask.data_);
}
/* @} */
/* @{ */
/** unary functions */
friend inline vec abs(vec const & arg)
{
return _mm256_and_pd(gen_abs_mask(), arg.data_);
}
friend always_inline vec sign(vec const & arg)
{
return detail::vec_sign(arg);
}
friend inline vec square(vec const & arg)
{
return _mm256_mul_pd(arg.data_, arg.data_);
}
friend inline vec sqrt(vec const & arg)
{
return _mm256_sqrt_pd(arg.data_);
}
friend inline vec cube(vec const & arg)
{
return _mm256_mul_pd(arg.data_, _mm256_mul_pd(arg.data_, arg.data_));
}
/* @} */
/* @{ */
/** binary functions */
friend inline vec max_(vec const & lhs, vec const & rhs)
{
return _mm256_max_pd(lhs.data_, rhs.data_);
}
friend inline vec min_(vec const & lhs, vec const & rhs)
{
return _mm256_min_pd(lhs.data_, rhs.data_);
}
/* @} */
/* @{ */
/** rounding functions */
friend inline vec round(vec const & arg)
{
return _mm256_round_pd(arg.data_, _MM_FROUND_TO_NEAREST_INT);
}
friend inline vec frac(vec const & arg)
{
vec floor_result = floor(arg);
return arg - floor_result;
}
friend inline vec floor(vec const & arg)
{
return _mm256_round_pd(arg.data_, _MM_FROUND_TO_NEG_INF);
}
friend inline vec ceil(vec const & arg)
{
return _mm256_round_pd(arg.data_, _MM_FROUND_TO_POS_INF);
}
friend inline vec trunc(vec const & arg)
{
return _mm256_round_pd(arg.data_, _MM_FROUND_TO_ZERO);
}
/* @} */
/* @{ */
/** mathematical functions */
NOVA_SIMD_DELEGATE_BINARY_TO_BASE(pow)
NOVA_SIMD_DELEGATE_BINARY_TO_BASE(signed_pow)
NOVA_SIMD_DELEGATE_UNARY_TO_BASE(log)
NOVA_SIMD_DELEGATE_UNARY_TO_BASE(log2)
NOVA_SIMD_DELEGATE_UNARY_TO_BASE(log10)
NOVA_SIMD_DELEGATE_UNARY_TO_BASE(exp)
NOVA_SIMD_DELEGATE_UNARY_TO_BASE(sin)
NOVA_SIMD_DELEGATE_UNARY_TO_BASE(cos)
NOVA_SIMD_DELEGATE_UNARY_TO_BASE(tan)
NOVA_SIMD_DELEGATE_UNARY_TO_BASE(asin)
NOVA_SIMD_DELEGATE_UNARY_TO_BASE(acos)
NOVA_SIMD_DELEGATE_UNARY_TO_BASE(atan)
NOVA_SIMD_DELEGATE_UNARY_TO_BASE(tanh)
friend inline vec signed_sqrt(vec const & arg)
{
return detail::vec_signed_sqrt(arg);
}
friend inline vec undenormalize(vec const & arg)
{
return detail::vec_undenormalize(arg);
}
/* @} */
};
} /* namespace nova */
#undef OPERATOR_ASSIGNMENT
#undef ARITHMETIC_OPERATOR
#undef RELATIONAL_OPERATOR
#undef always_inline
#endif /* VEC_AVX_DOUBLE_HPP */
|