File: vec_neon.hpp

package info (click to toggle)
supercollider 1%3A3.6.6~repack-2-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 23,792 kB
  • ctags: 25,269
  • sloc: cpp: 177,129; lisp: 63,421; ansic: 11,297; python: 1,787; perl: 766; yacc: 311; sh: 286; lex: 181; ruby: 173; makefile: 168; xml: 13
file content (531 lines) | stat: -rw-r--r-- 12,917 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
//  neon vector class
//
//  Copyright (c) 2010 Tim Blechmann and Dan Stowell
//
//  This program is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//
//  This program is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License
//  along with this program; see the file COPYING.  If not, write to
//  the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
//  Boston, MA 02111-1307, USA.

#ifndef VEC_NEON_HPP
#define VEC_NEON_HPP

#include <arm_neon.h>

#include "vec_base.hpp"
#include "vec_int_neon.hpp"
#include "detail/vec_math.hpp"

#if defined(__GNUC__) && defined(NDEBUG)
#define always_inline inline  __attribute__((always_inline))
#else
#define always_inline inline
#endif

namespace nova
{

template <>
struct vec<float>:
    vec_base<float, float32x4_t, 4>
{
    typedef float float_type;

private:
    typedef float32x4_t internal_vector_type;
    typedef vec_base<float, float32x4_t, 4> base;

    static float32x4_t set_vector(float f0, float f1, float f2, float f3)
    {
        float32x4_t ret;
        ret = vsetq_lane_f32(f0, ret, 0);
        ret = vsetq_lane_f32(f1, ret, 1);
        ret = vsetq_lane_f32(f2, ret, 2);
        ret = vsetq_lane_f32(f3, ret, 3);
        return ret;
    }

    static float32x4_t set_vector(float f)
    {
        return vdupq_n_f32(f);
    }

public:
    static inline float32x4_t gen_sign_mask(void)
    {
        static const int sign_mask = 0x80000000;
        float * casted = (float*)(&sign_mask);
        return vdupq_n_f32(*casted);
    }

    static inline float32x4_t gen_abs_mask(void)
    {
        static const int abs_mask = 0x7fffffff;
        float * casted = (float*)(&abs_mask);
        return vdupq_n_f32(*casted);
    }

    static inline float32x4_t gen_one(void)
    {
        return vdupq_n_f32(1.f);
    }

    static inline float32x4_t gen_05(void)
    {
        return vdupq_n_f32(0.5f);
    }

    static inline float32x4_t gen_zero(void)
    {
        return vdupq_n_f32(0.f);
    }

    static inline internal_vector_type gen_exp_mask(void)
    {
        return set_bitmask(0x7F800000);
    }

    static inline internal_vector_type gen_exp_mask_1(void)
    {
        return set_bitmask(0x3F000000);
    }

    static inline internal_vector_type set_bitmask(unsigned int mask)
    {
        union {
            unsigned int i;
            float f;
        } u;
        u.i = mask;
        return set_vector(u.f);
    }

    vec(float32x4_t const & arg):
        base(arg)
    {}

public:
    static const int size = 4;
    static const int objects_per_cacheline = 64/sizeof(float);
    static const bool has_compare_bitmask = true;

    static bool is_aligned(float* ptr)
    {
        return ((intptr_t)(ptr) & (intptr_t)(size * sizeof(float) - 1)) == 0;
    }

    /* @{ */
    /** constructors */
    vec(void)
    {}

    vec(float f)
    {
        set_vec(f);
    }

    vec(double f)
    {
        set_vec((float)f);
    }

    vec(vec const & rhs)
    {
        data_ = rhs.data_;
    }
    /* @} */

    /* @{ */
    /** io */
    void load(const float * data)
    {
        base::data_ = vld1q_f32((const float32_t*)data);
    }

    void load_aligned(const float * data)
    {
        load(data);
    }

    void store(float * dest) const
    {
        vst1q_f32((float32_t*)dest, data_);
    }

    void store_aligned(float * dest) const
    {
        store(dest);
    }

    void store_aligned_stream(float * dest) const
    {
        store(dest);
    }

    // no particular setzero intrinsic
    void clear(void)
    {
        set_vec(0);
    }

    /* @} */

    /* @{ */
    /** element access */
    void set (std::size_t index, float value)
    {
        switch (index) {
            case 0:
                data_ = vsetq_lane_f32(value, data_, 0);
                return;
            case 1:
                data_ = vsetq_lane_f32(value, data_, 1);
                return;
            case 2:
                data_ = vsetq_lane_f32(value, data_, 2);
                return;
            case 3:
                data_ = vsetq_lane_f32(value, data_, 3);
                return;
        }
        assert(false);
    }

    void set_vec (float value)
    {
        data_ = vdupq_n_f32(value);
    }

    float set_slope(float start, float slope)
    {
        data_ = set_vector(start,
                           start + slope,
                           start + slope + slope,
                           start + slope + slope + slope);

        return slope + slope + slope + slope;
    }

    float set_exp(float start, float curve)
    {
        data_ = set_vector(start,
                           start * curve,
                           start * curve * curve,
                           start * curve * curve * curve);

        return start * curve * curve * curve * curve;
    }

    float get (std::size_t index) const
    {
        switch (index) {
            case 0:
                return vgetq_lane_f32(data_, 0);
            case 1:
                return vgetq_lane_f32(data_, 1);
            case 2:
                return vgetq_lane_f32(data_, 2);
            case 3:
                return vgetq_lane_f32(data_, 3);
        }
        assert(false);
    }
    /* @} */

    /* @{ */

private:
    static float32x4_t vdivq_f32(float32x4_t lhs, float32x4_t rhs)
    {
        float32x4_t reciprocal = vrecpeq_f32(rhs);
        reciprocal = vmulq_f32(reciprocal, vrecpsq_f32(rhs, reciprocal));
        return vmulq_f32(lhs, reciprocal);
    }

public:
    friend vec fast_reciprocal(vec const & arg)
    {
        float32x4_t reciprocal = vrecpeq_f32(arg);
        return reciprocal;
    }

    friend vec reciprocal(vec const & arg)
    {
        float32x4_t reciprocal = vrecpeq_f32(arg);
        reciprocal = vmulq_f32(reciprocal, vrecpsq_f32(arg, reciprocal));
        return reciprocal;
    }

    /** arithmetic operators */
#define OPERATOR_ASSIGNMENT(op, opcode) \
    vec & operator op(vec const & rhs) \
    { \
        data_ = opcode(data_, rhs.data_);\
        return *this;\
    }

    OPERATOR_ASSIGNMENT(+=, vaddq_f32)
    OPERATOR_ASSIGNMENT(-=, vsubq_f32)
    OPERATOR_ASSIGNMENT(*=, vmulq_f32)
    OPERATOR_ASSIGNMENT(/=, vdivq_f32)

#undef OPERATOR_ASSIGNMENT

#define ARITHMETIC_OPERATOR(op, opcode) \
    friend vec operator op(vec const & lhs, vec const & rhs) \
    { \
        return opcode(lhs.data_, rhs.data_); \
    }

    ARITHMETIC_OPERATOR(+, vaddq_f32)
    ARITHMETIC_OPERATOR(-, vsubq_f32)
    ARITHMETIC_OPERATOR(*, vmulq_f32)
    ARITHMETIC_OPERATOR(/, vdivq_f32)

#undef ARITHMETIC_OPERATOR

    friend vec madd(vec const & arg1, vec const & arg2, vec const & arg3)
    {
        return vmlaq_f32(arg3.data_, arg2.data_, arg1.data_);
    }

private:
    static uint32x4_t vcneqq_f32(float32x4_t a, float32x4_t b)
    {
        return vmvnq_u32(vceqq_f32(a, b));
    }

public:
#define RELATIONAL_OPERATOR(op, opcode) \
    vec operator op(vec const & rhs) const \
    { \
        const uint32x4_t one = vreinterpretq_u32_f32(gen_one()); \
        uint32x4_t mask = opcode(data_, rhs.data_); \
        return vreinterpretq_f32_u32(vandq_u32(mask, one)); \
    }

     RELATIONAL_OPERATOR(<, vcltq_f32)
     RELATIONAL_OPERATOR(<=, vcleq_f32)
     RELATIONAL_OPERATOR(>, vcgtq_f32)
     RELATIONAL_OPERATOR(>=, vcgeq_f32)
     RELATIONAL_OPERATOR(==, vceqq_f32)
     RELATIONAL_OPERATOR(!=, vcneqq_f32)

#undef RELATIONAL_OPERATOR

    /* @{ */
#define BITWISE_OPERATOR(op, opcode) \
    vec operator op(vec const & rhs) const \
    { \
        return vreinterpretq_f32_u32(opcode( \
            vreinterpretq_u32_f32(data_), vreinterpretq_u32_f32(rhs.data_))); \
    }

    BITWISE_OPERATOR(&, vandq_u32)
    BITWISE_OPERATOR(|, vorrq_u32)
    BITWISE_OPERATOR(^, veorq_u32)

#undef BITWISE_OPERATOR

    friend inline vec andnot(vec const & lhs, vec const & rhs)
    {
        return  vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(lhs.data_),
                                                vmvnq_u32(vreinterpretq_u32_f32(rhs.data_))));;
    }


#define RELATIONAL_MASK_OPERATOR(op, opcode) \
    friend vec mask_##op(vec const & lhs, vec const & rhs) \
    { \
        return vreinterpretq_f32_u32(opcode( \
            lhs.data_, rhs.data_)); \
    }

    RELATIONAL_MASK_OPERATOR(lt, vcltq_f32)
    RELATIONAL_MASK_OPERATOR(le, vcleq_f32)
    RELATIONAL_MASK_OPERATOR(gt, vcgtq_f32)
    RELATIONAL_MASK_OPERATOR(ge, vcgeq_f32)
    RELATIONAL_MASK_OPERATOR(eq, vceqq_f32)
    RELATIONAL_MASK_OPERATOR(neq, vcneqq_f32)

#undef RELATIONAL_MASK_OPERATOR

public:
    friend inline vec select(vec lhs, vec rhs, vec bitmask)
    {
        return vbslq_f32(vreinterpretq_u32_f32(bitmask.data_), lhs.data_, rhs.data_);
    }

    /* @} */

    /* @{ */
    /** unary functions */
    friend inline vec abs(vec const & arg)
    {
        return vabsq_f32(arg.data_);
    }

    friend inline vec square(vec const & arg)
    {
        return vmulq_f32(arg.data_, arg.data_);
    }

    friend inline vec cube(vec const & arg)
    {
        return vmulq_f32(arg.data_, vmulq_f32(arg.data_, arg.data_));
    }
    /* @} */

    /* @{ */
    /** binary functions */
    friend inline vec max_(vec const & lhs, vec const & rhs)
    {
        return vmaxq_f32(lhs.data_, rhs.data_);
    }

    friend inline vec min_(vec const & lhs, vec const & rhs)
    {
        return vminq_f32(lhs.data_, rhs.data_);
    }
    /* @} */

    /* @{ */
    /** rounding functions */
    friend inline vec round(vec const & arg)
    {
        return detail::vec_round_float(arg);
    }

    friend inline vec frac(vec const & arg)
    {
        vec floor_result = floor(arg);
        return arg - floor_result;
    }

    friend inline vec floor(vec const & arg)
    {
        return detail::vec_floor_float(arg);
    }

    friend inline vec ceil(vec const & arg)
    {
        return detail::vec_ceil_float(arg);
    }

/*  FIXME: this is broken
    friend inline vec trunc(vec const & arg)
    {
        return arg.truncate_to_int().convert_to_float();
    }
*/
    NOVA_SIMD_DELEGATE_UNARY_TO_BASE(trunc)
    /* @} */

    /* @{ */
    /** mathematical functions */
    friend inline vec sign(vec const & arg)
    {
        return detail::vec_sign(arg);
    }

    NOVA_SIMD_DELEGATE_BINARY_TO_BASE(pow)
    NOVA_SIMD_DELEGATE_BINARY_TO_BASE(signed_pow)

    NOVA_SIMD_DELEGATE_UNARY_TO_BASE(log)
    NOVA_SIMD_DELEGATE_UNARY_TO_BASE(log2)
    NOVA_SIMD_DELEGATE_UNARY_TO_BASE(log10)
    NOVA_SIMD_DELEGATE_UNARY_TO_BASE(exp)

    NOVA_SIMD_DELEGATE_UNARY_TO_BASE(sin)
    NOVA_SIMD_DELEGATE_UNARY_TO_BASE(cos)
    NOVA_SIMD_DELEGATE_UNARY_TO_BASE(tan)

    NOVA_SIMD_DELEGATE_UNARY_TO_BASE(asin)
    NOVA_SIMD_DELEGATE_UNARY_TO_BASE(acos)
    NOVA_SIMD_DELEGATE_UNARY_TO_BASE(atan)

    NOVA_SIMD_DELEGATE_UNARY_TO_BASE(tanh)

private:
    static float32x4_t vsqrtq_f32(float32x4_t arg)
    {
        float32x4_t reciprocal = vrsqrteq_f32(arg);

        // TODO: maybe we should do another newton-raphson iteration (see: qvrsqrtsq_f32)?
        return vmulq_f32(arg, reciprocal);
    }


public:
    friend vec sqrt(vec const & arg)
    {
        return vsqrtq_f32(arg);
    }

    friend inline vec signed_sqrt(vec const & arg)
    {
        return detail::vec_signed_sqrt(arg);
    }
    /* @} */

    typedef detail::int_vec_neon int_vec;

    vec (int_vec const & rhs):
        base(vreinterpretq_f32_u32(rhs.data_))
    {}

    int_vec truncate_to_int(void) const
    {
        return int_vec(vreinterpretq_u32_s32(vcvtq_s32_f32(data_)));
    }

    float horizontal_min(void) const
    {
        float32x2_t high = vget_high_f32(data_);
        float32x2_t low = vget_low_f32(data_);

        float32x2_t pmin = vmin_f32(low, high);
        float pmin0 = vget_lane_f32(pmin, 0);
        float pmin1 = vget_lane_f32(pmin, 1);

        return std::min(pmin0, pmin1);
    }

    float horizontal_max(void) const
    {
        float32x2_t high = vget_high_f32(data_);
        float32x2_t low = vget_low_f32(data_);

        float32x2_t pmax = vmax_f32(low, high);
        float pmax0 = vget_lane_f32(pmax, 0);
        float pmax1 = vget_lane_f32(pmax, 1);

        return std::max(pmax0, pmax1);
    }

    float horizontal_sum(void) const
    {
        float32x2_t high = vget_high_f32(data_);
        float32x2_t low = vget_low_f32(data_);

        float32x2_t psum = vpadd_f32(low, high);
        return vget_lane_f32(psum, 0) + vget_lane_f32(psum, 1);
    }
};

} /* namespace nova */


#undef always_inline

#endif /* VEC_NEON_HPP */