1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
/* -- translated by f2c (version 19940927).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Table of constant values */
static complex c_b1 = {0.f,0.f};
static complex c_b2 = {1.f,0.f};
static integer c__3 = 3;
static integer c__1 = 1;
/* Subroutine */ int clagsy_(integer *n, integer *k, real *d, complex *a,
integer *lda, integer *iseed, complex *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8,
i__9;
doublereal d__1;
complex q__1, q__2, q__3, q__4;
/* Builtin functions */
double c_abs(complex *);
void c_div(complex *, complex *, complex *);
/* Local variables */
static integer i, j;
extern /* Subroutine */ int cgerc_(integer *, integer *, complex *,
complex *, integer *, complex *, integer *, complex *, integer *);
static complex alpha;
extern /* Subroutine */ int cscal_(integer *, complex *, complex *,
integer *);
extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
*, complex *, integer *);
extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
, complex *, integer *, complex *, integer *, complex *, complex *
, integer *), caxpy_(integer *, complex *, complex *,
integer *, complex *, integer *), csymv_(char *, integer *,
complex *, complex *, integer *, complex *, integer *, complex *,
complex *, integer *);
extern real scnrm2_(integer *, complex *, integer *);
static integer ii, jj;
static complex wa, wb;
extern /* Subroutine */ int clacgv_(integer *, complex *, integer *);
static real wn;
extern /* Subroutine */ int xerbla_(char *, integer *), clarnv_(
integer *, integer *, integer *, complex *);
static complex tau;
/* -- LAPACK auxiliary test routine (version 2.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
September 30, 1994
Purpose
=======
CLAGSY generates a complex symmetric matrix A, by pre- and post-
multiplying a real diagonal matrix D with a random unitary matrix:
A = U*D*U**T. The semi-bandwidth may then be reduced to k by
additional unitary transformations.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
K (input) INTEGER
The number of nonzero subdiagonals within the band of A.
0 <= K <= N-1.
D (input) REAL array, dimension (N)
The diagonal elements of the diagonal matrix D.
A (output) COMPLEX array, dimension (LDA,N)
The generated n by n symmetric matrix A (the full matrix is
stored).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= N.
ISEED (input/output) INTEGER array, dimension (4)
On entry, the seed of the random number generator; the array
elements must be between 0 and 4095, and ISEED(4) must be
odd.
On exit, the seed is updated.
WORK (workspace) COMPLEX array, dimension (2*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
Test the input arguments
Parameter adjustments */
--d;
a_dim1 = *lda;
a_offset = a_dim1 + 1;
a -= a_offset;
--iseed;
--work;
/* Function Body */
*info = 0;
if (*n < 0) {
*info = -1;
} else if (*k < 0 || *k > *n - 1) {
*info = -2;
} else if (*lda < max(1,*n)) {
*info = -5;
}
if (*info < 0) {
i__1 = -(*info);
xerbla_("CLAGSY", &i__1);
return 0;
}
/* initialize lower triangle of A to diagonal matrix */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i = j + 1; i <= i__2; ++i) {
i__3 = i + j * a_dim1;
a[i__3].r = 0.f, a[i__3].i = 0.f;
/* L10: */
}
/* L20: */
}
i__1 = *n;
for (i = 1; i <= i__1; ++i) {
i__2 = i + i * a_dim1;
i__3 = i;
a[i__2].r = d[i__3], a[i__2].i = 0.f;
/* L30: */
}
/* Generate lower triangle of symmetric matrix */
for (i = *n - 1; i >= 1; --i) {
/* generate random reflection */
i__1 = *n - i + 1;
clarnv_(&c__3, &iseed[1], &i__1, &work[1]);
i__1 = *n - i + 1;
wn = scnrm2_(&i__1, &work[1], &c__1);
d__1 = wn / c_abs(&work[1]);
q__1.r = d__1 * work[1].r, q__1.i = d__1 * work[1].i;
wa.r = q__1.r, wa.i = q__1.i;
if (wn == 0.f) {
tau.r = 0.f, tau.i = 0.f;
} else {
q__1.r = work[1].r + wa.r, q__1.i = work[1].i + wa.i;
wb.r = q__1.r, wb.i = q__1.i;
i__1 = *n - i;
c_div(&q__1, &c_b2, &wb);
cscal_(&i__1, &q__1, &work[2], &c__1);
work[1].r = 1.f, work[1].i = 0.f;
c_div(&q__1, &wb, &wa);
d__1 = q__1.r;
tau.r = d__1, tau.i = 0.f;
}
/* apply random reflection to A(i:n,i:n) from the left
and the right
compute y := tau * A * conjg(u) */
i__1 = *n - i + 1;
clacgv_(&i__1, &work[1], &c__1);
i__1 = *n - i + 1;
csymv_("Lower", &i__1, &tau, &a[i + i * a_dim1], lda, &work[1], &c__1,
&c_b1, &work[*n + 1], &c__1);
i__1 = *n - i + 1;
clacgv_(&i__1, &work[1], &c__1);
/* compute v := y - 1/2 * tau * ( u, y ) * u */
q__3.r = -.5f, q__3.i = 0.f;
q__2.r = q__3.r * tau.r - q__3.i * tau.i, q__2.i = q__3.r * tau.i +
q__3.i * tau.r;
i__1 = *n - i + 1;
cdotc_(&q__4, &i__1, &work[1], &c__1, &work[*n + 1], &c__1);
q__1.r = q__2.r * q__4.r - q__2.i * q__4.i, q__1.i = q__2.r * q__4.i
+ q__2.i * q__4.r;
alpha.r = q__1.r, alpha.i = q__1.i;
i__1 = *n - i + 1;
caxpy_(&i__1, &alpha, &work[1], &c__1, &work[*n + 1], &c__1);
/* apply the transformation as a rank-2 update to A(i:n,i:n)
CALL CSYR2( 'Lower', N-I+1, -ONE, WORK, 1, WORK( N+1 ), 1,
$ A( I, I ), LDA ) */
i__1 = *n;
for (jj = i; jj <= i__1; ++jj) {
i__2 = *n;
for (ii = jj; ii <= i__2; ++ii) {
i__3 = ii + jj * a_dim1;
i__4 = ii + jj * a_dim1;
i__5 = ii - i + 1;
i__6 = *n + jj - i + 1;
q__3.r = work[i__5].r * work[i__6].r - work[i__5].i * work[
i__6].i, q__3.i = work[i__5].r * work[i__6].i + work[
i__5].i * work[i__6].r;
q__2.r = a[i__4].r - q__3.r, q__2.i = a[i__4].i - q__3.i;
i__7 = *n + ii - i + 1;
i__8 = jj - i + 1;
q__4.r = work[i__7].r * work[i__8].r - work[i__7].i * work[
i__8].i, q__4.i = work[i__7].r * work[i__8].i + work[
i__7].i * work[i__8].r;
q__1.r = q__2.r - q__4.r, q__1.i = q__2.i - q__4.i;
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
/* L40: */
}
/* L50: */
}
/* L60: */
}
/* Reduce number of subdiagonals to K */
i__1 = *n - 1 - *k;
for (i = 1; i <= i__1; ++i) {
/* generate reflection to annihilate A(k+i+1:n,i) */
i__2 = *n - *k - i + 1;
wn = scnrm2_(&i__2, &a[*k + i + i * a_dim1], &c__1);
d__1 = wn / c_abs(&a[*k + i + i * a_dim1]);
i__2 = *k + i + i * a_dim1;
q__1.r = d__1 * a[i__2].r, q__1.i = d__1 * a[i__2].i;
wa.r = q__1.r, wa.i = q__1.i;
if (wn == 0.f) {
tau.r = 0.f, tau.i = 0.f;
} else {
i__2 = *k + i + i * a_dim1;
q__1.r = a[i__2].r + wa.r, q__1.i = a[i__2].i + wa.i;
wb.r = q__1.r, wb.i = q__1.i;
i__2 = *n - *k - i;
c_div(&q__1, &c_b2, &wb);
cscal_(&i__2, &q__1, &a[*k + i + 1 + i * a_dim1], &c__1);
i__2 = *k + i + i * a_dim1;
a[i__2].r = 1.f, a[i__2].i = 0.f;
c_div(&q__1, &wb, &wa);
d__1 = q__1.r;
tau.r = d__1, tau.i = 0.f;
}
/* apply reflection to A(k+i:n,i+1:k+i-1) from the left */
i__2 = *n - *k - i + 1;
i__3 = *k - 1;
cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*k + i + (i + 1)
* a_dim1], lda, &a[*k + i + i * a_dim1], &c__1, &c_b1, &work[
1], &c__1);
i__2 = *n - *k - i + 1;
i__3 = *k - 1;
q__1.r = -(doublereal)tau.r, q__1.i = -(doublereal)tau.i;
cgerc_(&i__2, &i__3, &q__1, &a[*k + i + i * a_dim1], &c__1, &work[1],
&c__1, &a[*k + i + (i + 1) * a_dim1], lda);
/* apply reflection to A(k+i:n,k+i:n) from the left and the rig
ht
compute y := tau * A * conjg(u) */
i__2 = *n - *k - i + 1;
clacgv_(&i__2, &a[*k + i + i * a_dim1], &c__1);
i__2 = *n - *k - i + 1;
csymv_("Lower", &i__2, &tau, &a[*k + i + (*k + i) * a_dim1], lda, &a[*
k + i + i * a_dim1], &c__1, &c_b1, &work[1], &c__1);
i__2 = *n - *k - i + 1;
clacgv_(&i__2, &a[*k + i + i * a_dim1], &c__1);
/* compute v := y - 1/2 * tau * ( u, y ) * u */
q__3.r = -.5f, q__3.i = 0.f;
q__2.r = q__3.r * tau.r - q__3.i * tau.i, q__2.i = q__3.r * tau.i +
q__3.i * tau.r;
i__2 = *n - *k - i + 1;
cdotc_(&q__4, &i__2, &a[*k + i + i * a_dim1], &c__1, &work[1], &c__1);
q__1.r = q__2.r * q__4.r - q__2.i * q__4.i, q__1.i = q__2.r * q__4.i
+ q__2.i * q__4.r;
alpha.r = q__1.r, alpha.i = q__1.i;
i__2 = *n - *k - i + 1;
caxpy_(&i__2, &alpha, &a[*k + i + i * a_dim1], &c__1, &work[1], &c__1)
;
/* apply symmetric rank-2 update to A(k+i:n,k+i:n)
CALL CSYR2( 'Lower', N-K-I+1, -ONE, A( K+I, I ), 1, WORK, 1,
$ A( K+I, K+I ), LDA ) */
i__2 = *n;
for (jj = *k + i; jj <= i__2; ++jj) {
i__3 = *n;
for (ii = jj; ii <= i__3; ++ii) {
i__4 = ii + jj * a_dim1;
i__5 = ii + jj * a_dim1;
i__6 = ii + i * a_dim1;
i__7 = jj - *k - i + 1;
q__3.r = a[i__6].r * work[i__7].r - a[i__6].i * work[i__7].i,
q__3.i = a[i__6].r * work[i__7].i + a[i__6].i * work[
i__7].r;
q__2.r = a[i__5].r - q__3.r, q__2.i = a[i__5].i - q__3.i;
i__8 = ii - *k - i + 1;
i__9 = jj + i * a_dim1;
q__4.r = work[i__8].r * a[i__9].r - work[i__8].i * a[i__9].i,
q__4.i = work[i__8].r * a[i__9].i + work[i__8].i * a[
i__9].r;
q__1.r = q__2.r - q__4.r, q__1.i = q__2.i - q__4.i;
a[i__4].r = q__1.r, a[i__4].i = q__1.i;
/* L70: */
}
/* L80: */
}
i__2 = *k + i + i * a_dim1;
q__1.r = -(doublereal)wa.r, q__1.i = -(doublereal)wa.i;
a[i__2].r = q__1.r, a[i__2].i = q__1.i;
i__2 = *n;
for (j = *k + i + 1; j <= i__2; ++j) {
i__3 = j + i * a_dim1;
a[i__3].r = 0.f, a[i__3].i = 0.f;
/* L90: */
}
/* L100: */
}
/* Store full symmetric matrix */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i = j + 1; i <= i__2; ++i) {
i__3 = j + i * a_dim1;
i__4 = i + j * a_dim1;
a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i;
/* L110: */
}
/* L120: */
}
return 0;
/* End of CLAGSY */
} /* clagsy_ */
|