1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
/* -- translated by f2c (version 19940927).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Table of constant values */
static complex c_b1 = {0.f,0.f};
static complex c_b2 = {1.f,0.f};
static integer c__3 = 3;
static integer c__1 = 1;
/* Subroutine */ int clarge_(integer *n, complex *a, integer *lda, integer *
iseed, complex *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1;
doublereal d__1;
complex q__1;
/* Builtin functions */
double c_abs(complex *);
void c_div(complex *, complex *, complex *);
/* Local variables */
static integer i;
extern /* Subroutine */ int cgerc_(integer *, integer *, complex *,
complex *, integer *, complex *, integer *, complex *, integer *),
cscal_(integer *, complex *, complex *, integer *), cgemv_(char *
, integer *, integer *, complex *, complex *, integer *, complex *
, integer *, complex *, complex *, integer *);
extern real scnrm2_(integer *, complex *, integer *);
static complex wa, wb;
static real wn;
extern /* Subroutine */ int xerbla_(char *, integer *), clarnv_(
integer *, integer *, integer *, complex *);
static complex tau;
/* -- LAPACK auxiliary test routine (version 2.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
September 30, 1994
Purpose
=======
CLARGE pre- and post-multiplies a complex general n by n matrix A
with a random unitary matrix: A = U*D*U'.
Arguments
=========
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) COMPLEX array, dimension (LDA,N)
On entry, the original n by n matrix A.
On exit, A is overwritten by U*A*U' for some random
unitary matrix U.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= N.
ISEED (input/output) INTEGER array, dimension (4)
On entry, the seed of the random number generator; the array
elements must be between 0 and 4095, and ISEED(4) must be
odd.
On exit, the seed is updated.
WORK (workspace) COMPLEX array, dimension (2*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
Test the input arguments
Parameter adjustments */
a_dim1 = *lda;
a_offset = a_dim1 + 1;
a -= a_offset;
--iseed;
--work;
/* Function Body */
*info = 0;
if (*n < 0) {
*info = -1;
} else if (*lda < max(1,*n)) {
*info = -3;
}
if (*info < 0) {
i__1 = -(*info);
xerbla_("CLARGE", &i__1);
return 0;
}
/* pre- and post-multiply A by random unitary matrix */
for (i = *n; i >= 1; --i) {
/* generate random reflection */
i__1 = *n - i + 1;
clarnv_(&c__3, &iseed[1], &i__1, &work[1]);
i__1 = *n - i + 1;
wn = scnrm2_(&i__1, &work[1], &c__1);
d__1 = wn / c_abs(&work[1]);
q__1.r = d__1 * work[1].r, q__1.i = d__1 * work[1].i;
wa.r = q__1.r, wa.i = q__1.i;
if (wn == 0.f) {
tau.r = 0.f, tau.i = 0.f;
} else {
q__1.r = work[1].r + wa.r, q__1.i = work[1].i + wa.i;
wb.r = q__1.r, wb.i = q__1.i;
i__1 = *n - i;
c_div(&q__1, &c_b2, &wb);
cscal_(&i__1, &q__1, &work[2], &c__1);
work[1].r = 1.f, work[1].i = 0.f;
c_div(&q__1, &wb, &wa);
d__1 = q__1.r;
tau.r = d__1, tau.i = 0.f;
}
/* multiply A(i:n,1:n) by random reflection from the left */
i__1 = *n - i + 1;
cgemv_("Conjugate transpose", &i__1, n, &c_b2, &a[i + a_dim1], lda, &
work[1], &c__1, &c_b1, &work[*n + 1], &c__1);
i__1 = *n - i + 1;
q__1.r = -(doublereal)tau.r, q__1.i = -(doublereal)tau.i;
cgerc_(&i__1, n, &q__1, &work[1], &c__1, &work[*n + 1], &c__1, &a[i +
a_dim1], lda);
/* multiply A(1:n,i:n) by random reflection from the right */
i__1 = *n - i + 1;
cgemv_("No transpose", n, &i__1, &c_b2, &a[i * a_dim1 + 1], lda, &
work[1], &c__1, &c_b1, &work[*n + 1], &c__1);
i__1 = *n - i + 1;
q__1.r = -(doublereal)tau.r, q__1.i = -(doublereal)tau.i;
cgerc_(n, &i__1, &q__1, &work[*n + 1], &c__1, &work[1], &c__1, &a[i *
a_dim1 + 1], lda);
/* L10: */
}
return 0;
/* End of CLARGE */
} /* clarge_ */
|