1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
#include "f2c.h"
/* Subroutine */ int dlartg_(doublereal *f, doublereal *g, doublereal *cs,
doublereal *sn, doublereal *r)
{
/* -- LAPACK auxiliary routine (version 2.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
September 30, 1994
Purpose
=======
DLARTG generate a plane rotation so that
[ CS SN ] . [ F ] = [ R ] where CS**2 + SN**2 = 1.
[ -SN CS ] [ G ] [ 0 ]
This is a slower, more accurate version of the BLAS1 routine DROTG,
with the following other differences:
F and G are unchanged on return.
If G=0, then CS=1 and SN=0.
If F=0 and (G .ne. 0), then CS=0 and SN=1 without doing any
floating point operations (saves work in DBDSQR when
there are zeros on the diagonal).
If F exceeds G in magnitude, CS will be positive.
Arguments
=========
F (input) DOUBLE PRECISION
The first component of vector to be rotated.
G (input) DOUBLE PRECISION
The second component of vector to be rotated.
CS (output) DOUBLE PRECISION
The cosine of the rotation.
SN (output) DOUBLE PRECISION
The sine of the rotation.
R (output) DOUBLE PRECISION
The nonzero component of the rotated vector.
=====================================================================
*/
/* Initialized data */
static logical first = TRUE_;
/* System generated locals */
integer i__1;
doublereal d__1, d__2;
/* Builtin functions */
double log(doublereal), pow_di(doublereal *, integer *), sqrt(doublereal);
/* Local variables */
static integer i;
static doublereal scale;
static integer count;
static doublereal f1, g1, safmn2, safmx2;
extern doublereal dlamch_(char *);
static doublereal safmin, eps;
if (first) {
first = FALSE_;
safmin = dlamch_("S");
eps = dlamch_("E");
d__1 = dlamch_("B");
i__1 = (integer) (log(safmin / eps) / log(dlamch_("B")) / 2.);
safmn2 = pow_di(&d__1, &i__1);
safmx2 = 1. / safmn2;
}
if (*g == 0.) {
*cs = 1.;
*sn = 0.;
*r = *f;
} else if (*f == 0.) {
*cs = 0.;
*sn = 1.;
*r = *g;
} else {
f1 = *f;
g1 = *g;
/* Computing MAX */
d__1 = abs(f1), d__2 = abs(g1);
scale = max(d__1,d__2);
if (scale >= safmx2) {
count = 0;
L10:
++count;
f1 *= safmn2;
g1 *= safmn2;
/* Computing MAX */
d__1 = abs(f1), d__2 = abs(g1);
scale = max(d__1,d__2);
if (scale >= safmx2) {
goto L10;
}
/* Computing 2nd power */
d__1 = f1;
/* Computing 2nd power */
d__2 = g1;
*r = sqrt(d__1 * d__1 + d__2 * d__2);
*cs = f1 / *r;
*sn = g1 / *r;
i__1 = count;
for (i = 1; i <= count; ++i) {
*r *= safmx2;
/* L20: */
}
} else if (scale <= safmn2) {
count = 0;
L30:
++count;
f1 *= safmx2;
g1 *= safmx2;
/* Computing MAX */
d__1 = abs(f1), d__2 = abs(g1);
scale = max(d__1,d__2);
if (scale <= safmn2) {
goto L30;
}
/* Computing 2nd power */
d__1 = f1;
/* Computing 2nd power */
d__2 = g1;
*r = sqrt(d__1 * d__1 + d__2 * d__2);
*cs = f1 / *r;
*sn = g1 / *r;
i__1 = count;
for (i = 1; i <= count; ++i) {
*r *= safmn2;
/* L40: */
}
} else {
/* Computing 2nd power */
d__1 = f1;
/* Computing 2nd power */
d__2 = g1;
*r = sqrt(d__1 * d__1 + d__2 * d__2);
*cs = f1 / *r;
*sn = g1 / *r;
}
if (abs(*f) > abs(*g) && *cs < 0.) {
*cs = -(*cs);
*sn = -(*sn);
*r = -(*r);
}
}
return 0;
/* End of DLARTG */
} /* dlartg_ */
|