1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
|
/* -- translated by f2c (version 19940927).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Table of constant values */
static integer c__1 = 1;
static real c_b23 = 0.f;
static integer c__0 = 0;
static real c_b39 = 1.f;
/* Subroutine */ int slatme_(integer *n, char *dist, integer *iseed, real *d,
integer *mode, real *cond, real *dmax__, char *ei, char *rsign, char *
upper, char *sim, real *ds, integer *modes, real *conds, integer *kl,
integer *ku, real *anorm, real *a, integer *lda, real *work, integer *
info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
real r__1, r__2, r__3;
/* Local variables */
static logical bads;
extern /* Subroutine */ int sger_(integer *, integer *, real *, real *,
integer *, real *, integer *, real *, integer *);
static integer isim;
static real temp;
static logical badei;
static integer i, j;
static real alpha;
extern logical lsame_(char *, char *);
static integer iinfo;
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
static real tempa[1];
static integer icols;
static logical useei;
static integer idist;
extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *,
real *, integer *, real *, integer *, real *, real *, integer *), scopy_(integer *, real *, integer *, real *, integer *);
static integer irows;
extern /* Subroutine */ int slatm1_(integer *, real *, integer *, integer
*, integer *, real *, integer *, integer *);
static integer ic, jc, ir, jr;
extern doublereal slange_(char *, integer *, integer *, real *, integer *,
real *);
extern /* Subroutine */ int slarge_(integer *, real *, integer *, integer
*, real *, integer *), slarfg_(integer *, real *, real *, integer
*, real *), xerbla_(char *, integer *);
extern doublereal slaran_(integer *);
static integer irsign;
extern /* Subroutine */ int slaset_(char *, integer *, integer *, real *,
real *, real *, integer *);
static integer iupper;
extern /* Subroutine */ int slarnv_(integer *, integer *, integer *, real
*);
static real xnorms;
static integer jcr;
static real tau;
/* -- LAPACK test routine (version 2.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
September 30, 1994
Purpose
=======
SLATME generates random non-symmetric square matrices with
specified eigenvalues for testing LAPACK programs.
SLATME operates by applying the following sequence of
operations:
1. Set the diagonal to D, where D may be input or
computed according to MODE, COND, DMAX, and RSIGN
as described below.
2. If complex conjugate pairs are desired (MODE=0 and EI(1)='R',
or MODE=5), certain pairs of adjacent elements of D are
interpreted as the real and complex parts of a complex
conjugate pair; A thus becomes block diagonal, with 1x1
and 2x2 blocks.
3. If UPPER='T', the upper triangle of A is set to random values
out of distribution DIST.
4. If SIM='T', A is multiplied on the left by a random matrix
X, whose singular values are specified by DS, MODES, and
CONDS, and on the right by X inverse.
5. If KL < N-1, the lower bandwidth is reduced to KL using
Householder transformations. If KU < N-1, the upper
bandwidth is reduced to KU.
6. If ANORM is not negative, the matrix is scaled to have
maximum-element-norm ANORM.
(Note: since the matrix cannot be reduced beyond Hessenberg form,
no packing options are available.)
Arguments
=========
N - INTEGER
The number of columns (or rows) of A. Not modified.
DIST - CHARACTER*1
On entry, DIST specifies the type of distribution to be used
to generate the random eigen-/singular values, and for the
upper triangle (see UPPER).
'U' => UNIFORM( 0, 1 ) ( 'U' for uniform )
'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric )
'N' => NORMAL( 0, 1 ) ( 'N' for normal )
Not modified.
ISEED - INTEGER array, dimension ( 4 )
On entry ISEED specifies the seed of the random number
generator. They should lie between 0 and 4095 inclusive,
and ISEED(4) should be odd. The random number generator
uses a linear congruential sequence limited to small
integers, and so should produce machine independent
random numbers. The values of ISEED are changed on
exit, and can be used in the next call to SLATME
to continue the same random number sequence.
Changed on exit.
D - REAL array, dimension ( N )
This array is used to specify the eigenvalues of A. If
MODE=0, then D is assumed to contain the eigenvalues (but
see the description of EI), otherwise they will be
computed according to MODE, COND, DMAX, and RSIGN and
placed in D.
Modified if MODE is nonzero.
MODE - INTEGER
On entry this describes how the eigenvalues are to
be specified:
MODE = 0 means use D (with EI) as input
MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND
MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND
MODE = 3 sets D(I)=COND**(-(I-1)/(N-1))
MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND)
MODE = 5 sets D to random numbers in the range
( 1/COND , 1 ) such that their logarithms
are uniformly distributed. Each odd-even pair
of elements will be either used as two real
eigenvalues or as the real and imaginary part
of a complex conjugate pair of eigenvalues;
the choice of which is done is random, with
50-50 probability, for each pair.
MODE = 6 set D to random numbers from same distribution
as the rest of the matrix.
MODE < 0 has the same meaning as ABS(MODE), except that
the order of the elements of D is reversed.
Thus if MODE is between 1 and 4, D has entries ranging
from 1 to 1/COND, if between -1 and -4, D has entries
ranging from 1/COND to 1,
Not modified.
COND - REAL
On entry, this is used as described under MODE above.
If used, it must be >= 1. Not modified.
DMAX - REAL
If MODE is neither -6, 0 nor 6, the contents of D, as
computed according to MODE and COND, will be scaled by
DMAX / max(abs(D(i))). Note that DMAX need not be
positive: if DMAX is negative (or zero), D will be
scaled by a negative number (or zero).
Not modified.
EI - CHARACTER*1 array, dimension ( N )
If MODE is 0, and EI(1) is not ' ' (space character),
this array specifies which elements of D (on input) are
real eigenvalues and which are the real and imaginary parts
of a complex conjugate pair of eigenvalues. The elements
of EI may then only have the values 'R' and 'I'. If
EI(j)='R' and EI(j+1)='I', then the j-th eigenvalue is
CMPLX( D(j) , D(j+1) ), and the (j+1)-th is the complex
conjugate thereof. If EI(j)=EI(j+1)='R', then the j-th
eigenvalue is D(j) (i.e., real). EI(1) may not be 'I',
nor may two adjacent elements of EI both have the value 'I'.
If MODE is not 0, then EI is ignored. If MODE is 0 and
EI(1)=' ', then the eigenvalues will all be real.
Not modified.
RSIGN - CHARACTER*1
If MODE is not 0, 6, or -6, and RSIGN='T', then the
elements of D, as computed according to MODE and COND, will
be multiplied by a random sign (+1 or -1). If RSIGN='F',
they will not be. RSIGN may only have the values 'T' or
'F'.
Not modified.
UPPER - CHARACTER*1
If UPPER='T', then the elements of A above the diagonal
(and above the 2x2 diagonal blocks, if A has complex
eigenvalues) will be set to random numbers out of DIST.
If UPPER='F', they will not. UPPER may only have the
values 'T' or 'F'.
Not modified.
SIM - CHARACTER*1
If SIM='T', then A will be operated on by a "similarity
transform", i.e., multiplied on the left by a matrix X and
on the right by X inverse. X = U S V, where U and V are
random unitary matrices and S is a (diagonal) matrix of
singular values specified by DS, MODES, and CONDS. If
SIM='F', then A will not be transformed.
Not modified.
DS - REAL array, dimension ( N )
This array is used to specify the singular values of X,
in the same way that D specifies the eigenvalues of A.
If MODE=0, the DS contains the singular values, which
may not be zero.
Modified if MODE is nonzero.
MODES - INTEGER
CONDS - REAL
Same as MODE and COND, but for specifying the diagonal
of S. MODES=-6 and +6 are not allowed (since they would
result in randomly ill-conditioned eigenvalues.)
KL - INTEGER
This specifies the lower bandwidth of the matrix. KL=1
specifies upper Hessenberg form. If KL is at least N-1,
then A will have full lower bandwidth. KL must be at
least 1.
Not modified.
KU - INTEGER
This specifies the upper bandwidth of the matrix. KU=1
specifies lower Hessenberg form. If KU is at least N-1,
then A will have full upper bandwidth; if KU and KL
are both at least N-1, then A will be dense. Only one of
KU and KL may be less than N-1. KU must be at least 1.
Not modified.
ANORM - REAL
If ANORM is not negative, then A will be scaled by a non-
negative real number to make the maximum-element-norm of A
to be ANORM.
Not modified.
A - REAL array, dimension ( LDA, N )
On exit A is the desired test matrix.
Modified.
LDA - INTEGER
LDA specifies the first dimension of A as declared in the
calling program. LDA must be at least N.
Not modified.
WORK - REAL array, dimension ( 3*N )
Workspace.
Modified.
INFO - INTEGER
Error code. On exit, INFO will be set to one of the
following values:
0 => normal return
-1 => N negative
-2 => DIST illegal string
-5 => MODE not in range -6 to 6
-6 => COND less than 1.0, and MODE neither -6, 0 nor 6
-8 => EI(1) is not ' ' or 'R', EI(j) is not 'R' or 'I', or
two adjacent elements of EI are 'I'.
-9 => RSIGN is not 'T' or 'F'
-10 => UPPER is not 'T' or 'F'
-11 => SIM is not 'T' or 'F'
-12 => MODES=0 and DS has a zero singular value.
-13 => MODES is not in the range -5 to 5.
-14 => MODES is nonzero and CONDS is less than 1.
-15 => KL is less than 1.
-16 => KU is less than 1, or KL and KU are both less than
N-1.
-19 => LDA is less than N.
1 => Error return from SLATM1 (computing D)
2 => Cannot scale to DMAX (max. eigenvalue is 0)
3 => Error return from SLATM1 (computing DS)
4 => Error return from SLARGE
5 => Zero singular value from SLATM1.
=====================================================================
1) Decode and Test the input parameters.
Initialize flags & seed.
Parameter adjustments */
--iseed;
--d;
--ei;
--ds;
a_dim1 = *lda;
a_offset = a_dim1 + 1;
a -= a_offset;
--work;
/* Function Body */
*info = 0;
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* Decode DIST */
if (lsame_(dist, "U")) {
idist = 1;
} else if (lsame_(dist, "S")) {
idist = 2;
} else if (lsame_(dist, "N")) {
idist = 3;
} else {
idist = -1;
}
/* Check EI */
useei = TRUE_;
badei = FALSE_;
if (lsame_(ei + 1, " ") || *mode != 0) {
useei = FALSE_;
} else {
if (lsame_(ei + 1, "R")) {
i__1 = *n;
for (j = 2; j <= i__1; ++j) {
if (lsame_(ei + j, "I")) {
if (lsame_(ei + (j - 1), "I")) {
badei = TRUE_;
}
} else {
if (! lsame_(ei + j, "R")) {
badei = TRUE_;
}
}
/* L10: */
}
} else {
badei = TRUE_;
}
}
/* Decode RSIGN */
if (lsame_(rsign, "T")) {
irsign = 1;
} else if (lsame_(rsign, "F")) {
irsign = 0;
} else {
irsign = -1;
}
/* Decode UPPER */
if (lsame_(upper, "T")) {
iupper = 1;
} else if (lsame_(upper, "F")) {
iupper = 0;
} else {
iupper = -1;
}
/* Decode SIM */
if (lsame_(sim, "T")) {
isim = 1;
} else if (lsame_(sim, "F")) {
isim = 0;
} else {
isim = -1;
}
/* Check DS, if MODES=0 and ISIM=1 */
bads = FALSE_;
if (*modes == 0 && isim == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (ds[j] == 0.f) {
bads = TRUE_;
}
/* L20: */
}
}
/* Set INFO if an error */
if (*n < 0) {
*info = -1;
} else if (idist == -1) {
*info = -2;
} else if (abs(*mode) > 6) {
*info = -5;
} else if (*mode != 0 && abs(*mode) != 6 && *cond < 1.f) {
*info = -6;
} else if (badei) {
*info = -8;
} else if (irsign == -1) {
*info = -9;
} else if (iupper == -1) {
*info = -10;
} else if (isim == -1) {
*info = -11;
} else if (bads) {
*info = -12;
} else if (isim == 1 && abs(*modes) > 5) {
*info = -13;
} else if (isim == 1 && *modes != 0 && *conds < 1.f) {
*info = -14;
} else if (*kl < 1) {
*info = -15;
} else if (*ku < 1 || *ku < *n - 1 && *kl < *n - 1) {
*info = -16;
} else if (*lda < max(1,*n)) {
*info = -19;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SLATME", &i__1);
return 0;
}
/* Initialize random number generator */
for (i = 1; i <= 4; ++i) {
iseed[i] = (i__1 = iseed[i], abs(i__1)) % 4096;
/* L30: */
}
if (iseed[4] % 2 != 1) {
++iseed[4];
}
/* 2) Set up diagonal of A
Compute D according to COND and MODE */
slatm1_(mode, cond, &irsign, &idist, &iseed[1], &d[1], n, &iinfo);
if (iinfo != 0) {
*info = 1;
return 0;
}
if (*mode != 0 && abs(*mode) != 6) {
/* Scale by DMAX */
temp = dabs(d[1]);
i__1 = *n;
for (i = 2; i <= i__1; ++i) {
/* Computing MAX */
r__2 = temp, r__3 = (r__1 = d[i], dabs(r__1));
temp = dmax(r__2,r__3);
/* L40: */
}
if (temp > 0.f) {
alpha = *dmax__ / temp;
} else if (*dmax__ != 0.f) {
*info = 2;
return 0;
} else {
alpha = 0.f;
}
sscal_(n, &alpha, &d[1], &c__1);
}
slaset_("Full", n, n, &c_b23, &c_b23, &a[a_offset], lda);
i__1 = *lda + 1;
scopy_(n, &d[1], &c__1, &a[a_offset], &i__1);
/* Set up complex conjugate pairs */
if (*mode == 0) {
if (useei) {
i__1 = *n;
for (j = 2; j <= i__1; ++j) {
if (lsame_(ei + j, "I")) {
a[j - 1 + j * a_dim1] = a[j + j * a_dim1];
a[j + (j - 1) * a_dim1] = -(doublereal)a[j + j * a_dim1];
a[j + j * a_dim1] = a[j - 1 + (j - 1) * a_dim1];
}
/* L50: */
}
}
} else if (abs(*mode) == 5) {
i__1 = *n;
for (j = 2; j <= i__1; j += 2) {
if (slaran_(&iseed[1]) > .5f) {
a[j - 1 + j * a_dim1] = a[j + j * a_dim1];
a[j + (j - 1) * a_dim1] = -(doublereal)a[j + j * a_dim1];
a[j + j * a_dim1] = a[j - 1 + (j - 1) * a_dim1];
}
/* L60: */
}
}
/* 3) If UPPER='T', set upper triangle of A to random numbers.
(but don't modify the corners of 2x2 blocks.) */
if (iupper != 0) {
i__1 = *n;
for (jc = 2; jc <= i__1; ++jc) {
if (a[jc - 1 + jc * a_dim1] != 0.f) {
jr = jc - 2;
} else {
jr = jc - 1;
}
slarnv_(&idist, &iseed[1], &jr, &a[jc * a_dim1 + 1]);
/* L70: */
}
}
/* 4) If SIM='T', apply similarity transformation.
-1
Transform is X A X , where X = U S V, thus
it is U S V A V' (1/S) U' */
if (isim != 0) {
/* Compute S (singular values of the eigenvector matrix)
according to CONDS and MODES */
slatm1_(modes, conds, &c__0, &c__0, &iseed[1], &ds[1], n, &iinfo);
if (iinfo != 0) {
*info = 3;
return 0;
}
/* Multiply by V and V' */
slarge_(n, &a[a_offset], lda, &iseed[1], &work[1], &iinfo);
if (iinfo != 0) {
*info = 4;
return 0;
}
/* Multiply by S and (1/S) */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
sscal_(n, &ds[j], &a[j + a_dim1], lda);
if (ds[j] != 0.f) {
r__1 = 1.f / ds[j];
sscal_(n, &r__1, &a[j * a_dim1 + 1], &c__1);
} else {
*info = 5;
return 0;
}
/* L80: */
}
/* Multiply by U and U' */
slarge_(n, &a[a_offset], lda, &iseed[1], &work[1], &iinfo);
if (iinfo != 0) {
*info = 4;
return 0;
}
}
/* 5) Reduce the bandwidth. */
if (*kl < *n - 1) {
/* Reduce bandwidth -- kill column */
i__1 = *n - 1;
for (jcr = *kl + 1; jcr <= i__1; ++jcr) {
ic = jcr - *kl;
irows = *n + 1 - jcr;
icols = *n + *kl - jcr;
scopy_(&irows, &a[jcr + ic * a_dim1], &c__1, &work[1], &c__1);
xnorms = work[1];
slarfg_(&irows, &xnorms, &work[2], &c__1, &tau);
work[1] = 1.f;
sgemv_("T", &irows, &icols, &c_b39, &a[jcr + (ic + 1) * a_dim1],
lda, &work[1], &c__1, &c_b23, &work[irows + 1], &c__1)
;
r__1 = -(doublereal)tau;
sger_(&irows, &icols, &r__1, &work[1], &c__1, &work[irows + 1], &
c__1, &a[jcr + (ic + 1) * a_dim1], lda);
sgemv_("N", n, &irows, &c_b39, &a[jcr * a_dim1 + 1], lda, &work[1]
, &c__1, &c_b23, &work[irows + 1], &c__1);
r__1 = -(doublereal)tau;
sger_(n, &irows, &r__1, &work[irows + 1], &c__1, &work[1], &c__1,
&a[jcr * a_dim1 + 1], lda);
a[jcr + ic * a_dim1] = xnorms;
i__2 = irows - 1;
slaset_("Full", &i__2, &c__1, &c_b23, &c_b23, &a[jcr + 1 + ic *
a_dim1], lda);
/* L90: */
}
} else if (*ku < *n - 1) {
/* Reduce upper bandwidth -- kill a row at a time. */
i__1 = *n - 1;
for (jcr = *ku + 1; jcr <= i__1; ++jcr) {
ir = jcr - *ku;
irows = *n + *ku - jcr;
icols = *n + 1 - jcr;
scopy_(&icols, &a[ir + jcr * a_dim1], lda, &work[1], &c__1);
xnorms = work[1];
slarfg_(&icols, &xnorms, &work[2], &c__1, &tau);
work[1] = 1.f;
sgemv_("N", &irows, &icols, &c_b39, &a[ir + 1 + jcr * a_dim1],
lda, &work[1], &c__1, &c_b23, &work[icols + 1], &c__1)
;
r__1 = -(doublereal)tau;
sger_(&irows, &icols, &r__1, &work[icols + 1], &c__1, &work[1], &
c__1, &a[ir + 1 + jcr * a_dim1], lda);
sgemv_("C", &icols, n, &c_b39, &a[jcr + a_dim1], lda, &work[1], &
c__1, &c_b23, &work[icols + 1], &c__1);
r__1 = -(doublereal)tau;
sger_(&icols, n, &r__1, &work[1], &c__1, &work[icols + 1], &c__1,
&a[jcr + a_dim1], lda);
a[ir + jcr * a_dim1] = xnorms;
i__2 = icols - 1;
slaset_("Full", &c__1, &i__2, &c_b23, &c_b23, &a[ir + (jcr + 1) *
a_dim1], lda);
/* L100: */
}
}
/* Scale the matrix to have norm ANORM */
if (*anorm >= 0.f) {
temp = slange_("M", n, n, &a[a_offset], lda, tempa);
if (temp > 0.f) {
alpha = *anorm / temp;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
sscal_(n, &alpha, &a[j * a_dim1 + 1], &c__1);
/* L110: */
}
}
}
return 0;
/* End of SLATME */
} /* slatme_ */
|