1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
/* -- translated by f2c (version 19940927).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Double Complex */ VOID zlatm2_(doublecomplex * ret_val, integer *m,
integer *n, integer *i, integer *j, integer *kl, integer *ku, integer
*idist, integer *iseed, doublecomplex *d, integer *igrade,
doublecomplex *dl, doublecomplex *dr, integer *ipvtng, integer *iwork,
doublereal *sparse)
{
/* System generated locals */
integer i__1, i__2;
doublecomplex z__1, z__2, z__3;
/* Builtin functions */
void z_div(doublecomplex *, doublecomplex *, doublecomplex *), d_cnjg(
doublecomplex *, doublecomplex *);
/* Local variables */
static integer isub, jsub;
static doublecomplex ctemp;
extern doublereal dlaran_(integer *);
extern /* Double Complex */ VOID zlarnd_(doublecomplex *, integer *,
integer *);
/* -- LAPACK auxiliary test routine (version 2.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
February 29, 1992
Purpose
=======
ZLATM2 returns the (I,J) entry of a random matrix of dimension
(M, N) described by the other paramters. It is called by the
ZLATMR routine in order to build random test matrices. No error
checking on parameters is done, because this routine is called in
a tight loop by ZLATMR which has already checked the parameters.
Use of ZLATM2 differs from CLATM3 in the order in which the random
number generator is called to fill in random matrix entries.
With ZLATM2, the generator is called to fill in the pivoted matrix
columnwise. With ZLATM3, the generator is called to fill in the
matrix columnwise, after which it is pivoted. Thus, ZLATM3 can
be used to construct random matrices which differ only in their
order of rows and/or columns. ZLATM2 is used to construct band
matrices while avoiding calling the random number generator for
entries outside the band (and therefore generating random numbers
The matrix whose (I,J) entry is returned is constructed as
follows (this routine only computes one entry):
If I is outside (1..M) or J is outside (1..N), return zero
(this is convenient for generating matrices in band format).
Generate a matrix A with random entries of distribution IDIST.
Set the diagonal to D.
Grade the matrix, if desired, from the left (by DL) and/or
from the right (by DR or DL) as specified by IGRADE.
Permute, if desired, the rows and/or columns as specified by
IPVTNG and IWORK.
Band the matrix to have lower bandwidth KL and upper
bandwidth KU.
Set random entries to zero as specified by SPARSE.
Arguments
=========
M - INTEGER
Number of rows of matrix. Not modified.
N - INTEGER
Number of columns of matrix. Not modified.
I - INTEGER
Row of entry to be returned. Not modified.
J - INTEGER
Column of entry to be returned. Not modified.
KL - INTEGER
Lower bandwidth. Not modified.
KU - INTEGER
Upper bandwidth. Not modified.
IDIST - INTEGER
On entry, IDIST specifies the type of distribution to be
used to generate a random matrix .
1 => real and imaginary parts each UNIFORM( 0, 1 )
2 => real and imaginary parts each UNIFORM( -1, 1 )
3 => real and imaginary parts each NORMAL( 0, 1 )
4 => complex number uniform in DISK( 0 , 1 )
Not modified.
ISEED - INTEGER array of dimension ( 4 )
Seed for random number generator.
Changed on exit.
D - COMPLEX*16 array of dimension ( MIN( I , J ) )
Diagonal entries of matrix. Not modified.
IGRADE - INTEGER
Specifies grading of matrix as follows:
0 => no grading
1 => matrix premultiplied by diag( DL )
2 => matrix postmultiplied by diag( DR )
3 => matrix premultiplied by diag( DL ) and
postmultiplied by diag( DR )
4 => matrix premultiplied by diag( DL ) and
postmultiplied by inv( diag( DL ) )
5 => matrix premultiplied by diag( DL ) and
postmultiplied by diag( CONJG(DL) )
6 => matrix premultiplied by diag( DL ) and
postmultiplied by diag( DL )
Not modified.
DL - COMPLEX*16 array ( I or J, as appropriate )
Left scale factors for grading matrix. Not modified.
DR - COMPLEX*16 array ( I or J, as appropriate )
Right scale factors for grading matrix. Not modified.
IPVTNG - INTEGER
On entry specifies pivoting permutations as follows:
0 => none.
1 => row pivoting.
2 => column pivoting.
3 => full pivoting, i.e., on both sides.
Not modified.
IWORK - INTEGER array ( I or J, as appropriate )
This array specifies the permutation used. The
row (or column) in position K was originally in
position IWORK( K ).
This differs from IWORK for ZLATM3. Not modified.
SPARSE - DOUBLE PRECISION between 0. and 1.
On entry specifies the sparsity of the matrix
if sparse matix is to be generated.
SPARSE should lie between 0 and 1.
A uniform ( 0, 1 ) random number x is generated and
compared to SPARSE; if x is larger the matrix entry
is unchanged and if x is smaller the entry is set
to zero. Thus on the average a fraction SPARSE of the
entries will be set to zero.
Not modified.
=====================================================================
-----------------------------------------------------------------------
Check for I and J in range
Parameter adjustments */
--iwork;
--dr;
--dl;
--d;
--iseed;
/* Function Body */
if (*i < 1 || *i > *m || *j < 1 || *j > *n) {
ret_val->r = 0., ret_val->i = 0.;
return ;
}
/* Check for banding */
if (*j > *i + *ku || *j < *i - *kl) {
ret_val->r = 0., ret_val->i = 0.;
return ;
}
/* Check for sparsity */
if (*sparse > 0.) {
if (dlaran_(&iseed[1]) < *sparse) {
ret_val->r = 0., ret_val->i = 0.;
return ;
}
}
/* Compute subscripts depending on IPVTNG */
if (*ipvtng == 0) {
isub = *i;
jsub = *j;
} else if (*ipvtng == 1) {
isub = iwork[*i];
jsub = *j;
} else if (*ipvtng == 2) {
isub = *i;
jsub = iwork[*j];
} else if (*ipvtng == 3) {
isub = iwork[*i];
jsub = iwork[*j];
}
/* Compute entry and grade it according to IGRADE */
if (isub == jsub) {
i__1 = isub;
ctemp.r = d[i__1].r, ctemp.i = d[i__1].i;
} else {
zlarnd_(&z__1, idist, &iseed[1]);
ctemp.r = z__1.r, ctemp.i = z__1.i;
}
if (*igrade == 1) {
i__1 = isub;
z__1.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, z__1.i =
ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r;
ctemp.r = z__1.r, ctemp.i = z__1.i;
} else if (*igrade == 2) {
i__1 = jsub;
z__1.r = ctemp.r * dr[i__1].r - ctemp.i * dr[i__1].i, z__1.i =
ctemp.r * dr[i__1].i + ctemp.i * dr[i__1].r;
ctemp.r = z__1.r, ctemp.i = z__1.i;
} else if (*igrade == 3) {
i__1 = isub;
z__2.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, z__2.i =
ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r;
i__2 = jsub;
z__1.r = z__2.r * dr[i__2].r - z__2.i * dr[i__2].i, z__1.i = z__2.r *
dr[i__2].i + z__2.i * dr[i__2].r;
ctemp.r = z__1.r, ctemp.i = z__1.i;
} else if (*igrade == 4 && isub != jsub) {
i__1 = isub;
z__2.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, z__2.i =
ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r;
z_div(&z__1, &z__2, &dl[jsub]);
ctemp.r = z__1.r, ctemp.i = z__1.i;
} else if (*igrade == 5) {
i__1 = isub;
z__2.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, z__2.i =
ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r;
d_cnjg(&z__3, &dl[jsub]);
z__1.r = z__2.r * z__3.r - z__2.i * z__3.i, z__1.i = z__2.r * z__3.i
+ z__2.i * z__3.r;
ctemp.r = z__1.r, ctemp.i = z__1.i;
} else if (*igrade == 6) {
i__1 = isub;
z__2.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, z__2.i =
ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r;
i__2 = jsub;
z__1.r = z__2.r * dl[i__2].r - z__2.i * dl[i__2].i, z__1.i = z__2.r *
dl[i__2].i + z__2.i * dl[i__2].r;
ctemp.r = z__1.r, ctemp.i = z__1.i;
}
ret_val->r = ctemp.r, ret_val->i = ctemp.i;
return ;
/* End of ZLATM2 */
} /* zlatm2_ */
|