1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
|
/* -- translated by f2c (version 19940927).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Table of constant values */
static integer c__0 = 0;
static integer c__1 = 1;
/* Subroutine */ int zlatmr_(integer *m, integer *n, char *dist, integer *
iseed, char *sym, doublecomplex *d, integer *mode, doublereal *cond,
doublecomplex *dmax__, char *rsign, char *grade, doublecomplex *dl,
integer *model, doublereal *condl, doublecomplex *dr, integer *moder,
doublereal *condr, char *pivtng, integer *ipivot, integer *kl,
integer *ku, doublereal *sparse, doublereal *anorm, char *pack,
doublecomplex *a, integer *lda, integer *iwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
doublereal d__1, d__2;
doublecomplex z__1, z__2;
/* Builtin functions */
double z_abs(doublecomplex *);
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
static integer isub, jsub;
static doublereal temp;
static integer isym, i, j, k, ipack;
extern logical lsame_(char *, char *);
static doublereal tempa[1];
static doublecomplex ctemp;
static integer iisub, idist, jjsub, mnmin;
static logical dzero;
static integer mnsub;
static doublereal onorm;
static integer mxsub, npvts;
extern /* Subroutine */ int zlatm1_(integer *, doublereal *, integer *,
integer *, integer *, doublecomplex *, integer *, integer *);
extern /* Double Complex */ VOID zlatm2_(doublecomplex *, integer *,
integer *, integer *, integer *, integer *, integer *, integer *,
integer *, doublecomplex *, integer *, doublecomplex *,
doublecomplex *, integer *, integer *, doublereal *), zlatm3_(
doublecomplex *, integer *, integer *, integer *, integer *,
integer *, integer *, integer *, integer *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
integer *, integer *, doublereal *);
static doublecomplex calpha;
static integer igrade;
static logical fulbnd;
extern doublereal zlangb_(char *, integer *, integer *, integer *,
doublecomplex *, integer *, doublereal *);
extern /* Subroutine */ int xerbla_(char *, integer *);
static logical badpvt;
extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
integer *, doublereal *);
extern /* Subroutine */ int zdscal_(integer *, doublereal *,
doublecomplex *, integer *);
extern doublereal zlansb_(char *, char *, integer *, integer *,
doublecomplex *, integer *, doublereal *);
static integer irsign, ipvtng;
extern doublereal zlansp_(char *, char *, integer *, doublecomplex *,
doublereal *), zlansy_(char *, char *, integer *,
doublecomplex *, integer *, doublereal *);
static integer kll, kuu;
/* -- LAPACK test routine (version 2.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
February 29, 1992
Purpose
=======
ZLATMR generates random matrices of various types for testing
LAPACK programs.
ZLATMR operates by applying the following sequence of
operations:
Generate a matrix A with random entries of distribution DIST
which is symmetric if SYM='S', Hermitian if SYM='H', and
nonsymmetric if SYM='N'.
Set the diagonal to D, where D may be input or
computed according to MODE, COND, DMAX and RSIGN
as described below.
Grade the matrix, if desired, from the left and/or right
as specified by GRADE. The inputs DL, MODEL, CONDL, DR,
MODER and CONDR also determine the grading as described
below.
Permute, if desired, the rows and/or columns as specified by
PIVTNG and IPIVOT.
Set random entries to zero, if desired, to get a random sparse
matrix as specified by SPARSE.
Make A a band matrix, if desired, by zeroing out the matrix
outside a band of lower bandwidth KL and upper bandwidth KU.
Scale A, if desired, to have maximum entry ANORM.
Pack the matrix if desired. Options specified by PACK are:
no packing
zero out upper half (if symmetric or Hermitian)
zero out lower half (if symmetric or Hermitian)
store the upper half columnwise (if symmetric or Hermitian
or square upper triangular)
store the lower half columnwise (if symmetric or Hermitian
or square lower triangular)
same as upper half rowwise if symmetric
same as conjugate upper half rowwise if Hermitian
store the lower triangle in banded format
(if symmetric or Hermitian)
store the upper triangle in banded format
(if symmetric or Hermitian)
store the entire matrix in banded format
Note: If two calls to ZLATMR differ only in the PACK parameter,
they will generate mathematically equivalent matrices.
If two calls to ZLATMR both have full bandwidth (KL = M-1
and KU = N-1), and differ only in the PIVTNG and PACK
parameters, then the matrices generated will differ only
in the order of the rows and/or columns, and otherwise
contain the same data. This consistency cannot be and
is not maintained with less than full bandwidth.
Arguments
=========
M - INTEGER
Number of rows of A. Not modified.
N - INTEGER
Number of columns of A. Not modified.
DIST - CHARACTER*1
On entry, DIST specifies the type of distribution to be used
to generate a random matrix .
'U' => real and imaginary parts are independent
UNIFORM( 0, 1 ) ( 'U' for uniform )
'S' => real and imaginary parts are independent
UNIFORM( -1, 1 ) ( 'S' for symmetric )
'N' => real and imaginary parts are independent
NORMAL( 0, 1 ) ( 'N' for normal )
'D' => uniform on interior of unit disk ( 'D' for disk )
Not modified.
ISEED - INTEGER array, dimension (4)
On entry ISEED specifies the seed of the random number
generator. They should lie between 0 and 4095 inclusive,
and ISEED(4) should be odd. The random number generator
uses a linear congruential sequence limited to small
integers, and so should produce machine independent
random numbers. The values of ISEED are changed on
exit, and can be used in the next call to ZLATMR
to continue the same random number sequence.
Changed on exit.
SYM - CHARACTER*1
If SYM='S', generated matrix is symmetric.
If SYM='H', generated matrix is Hermitian.
If SYM='N', generated matrix is nonsymmetric.
Not modified.
D - COMPLEX*16 array, dimension (min(M,N))
On entry this array specifies the diagonal entries
of the diagonal of A. D may either be specified
on entry, or set according to MODE and COND as described
below. If the matrix is Hermitian, the real part of D
will be taken. May be changed on exit if MODE is nonzero.
MODE - INTEGER
On entry describes how D is to be used:
MODE = 0 means use D as input
MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND
MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND
MODE = 3 sets D(I)=COND**(-(I-1)/(N-1))
MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND)
MODE = 5 sets D to random numbers in the range
( 1/COND , 1 ) such that their logarithms
are uniformly distributed.
MODE = 6 set D to random numbers from same distribution
as the rest of the matrix.
MODE < 0 has the same meaning as ABS(MODE), except that
the order of the elements of D is reversed.
Thus if MODE is positive, D has entries ranging from
1 to 1/COND, if negative, from 1/COND to 1,
Not modified.
COND - DOUBLE PRECISION
On entry, used as described under MODE above.
If used, it must be >= 1. Not modified.
DMAX - COMPLEX*16
If MODE neither -6, 0 nor 6, the diagonal is scaled by
DMAX / max(abs(D(i))), so that maximum absolute entry
of diagonal is abs(DMAX). If DMAX is complex (or zero),
diagonal will be scaled by a complex number (or zero).
RSIGN - CHARACTER*1
If MODE neither -6, 0 nor 6, specifies sign of diagonal
as follows:
'T' => diagonal entries are multiplied by a random complex
number uniformly distributed with absolute value 1
'F' => diagonal unchanged
Not modified.
GRADE - CHARACTER*1
Specifies grading of matrix as follows:
'N' => no grading
'L' => matrix premultiplied by diag( DL )
(only if matrix nonsymmetric)
'R' => matrix postmultiplied by diag( DR )
(only if matrix nonsymmetric)
'B' => matrix premultiplied by diag( DL ) and
postmultiplied by diag( DR )
(only if matrix nonsymmetric)
'H' => matrix premultiplied by diag( DL ) and
postmultiplied by diag( CONJG(DL) )
(only if matrix Hermitian or nonsymmetric)
'S' => matrix premultiplied by diag( DL ) and
postmultiplied by diag( DL )
(only if matrix symmetric or nonsymmetric)
'E' => matrix premultiplied by diag( DL ) and
postmultiplied by inv( diag( DL ) )
( 'S' for similarity )
(only if matrix nonsymmetric)
Note: if GRADE='S', then M must equal N.
Not modified.
DL - COMPLEX*16 array, dimension (M)
If MODEL=0, then on entry this array specifies the diagonal
entries of a diagonal matrix used as described under GRADE
above. If MODEL is not zero, then DL will be set according
to MODEL and CONDL, analogous to the way D is set according
to MODE and COND (except there is no DMAX parameter for DL).
If GRADE='E', then DL cannot have zero entries.
Not referenced if GRADE = 'N' or 'R'. Changed on exit.
MODEL - INTEGER
This specifies how the diagonal array DL is to be computed,
just as MODE specifies how D is to be computed.
Not modified.
CONDL - DOUBLE PRECISION
When MODEL is not zero, this specifies the condition number
of the computed DL. Not modified.
DR - COMPLEX*16 array, dimension (N)
If MODER=0, then on entry this array specifies the diagonal
entries of a diagonal matrix used as described under GRADE
above. If MODER is not zero, then DR will be set according
to MODER and CONDR, analogous to the way D is set according
to MODE and COND (except there is no DMAX parameter for DR).
Not referenced if GRADE = 'N', 'L', 'H' or 'S'.
Changed on exit.
MODER - INTEGER
This specifies how the diagonal array DR is to be computed,
just as MODE specifies how D is to be computed.
Not modified.
CONDR - DOUBLE PRECISION
When MODER is not zero, this specifies the condition number
of the computed DR. Not modified.
PIVTNG - CHARACTER*1
On entry specifies pivoting permutations as follows:
'N' or ' ' => none.
'L' => left or row pivoting (matrix must be nonsymmetric).
'R' => right or column pivoting (matrix must be
nonsymmetric).
'B' or 'F' => both or full pivoting, i.e., on both sides.
In this case, M must equal N
If two calls to ZLATMR both have full bandwidth (KL = M-1
and KU = N-1), and differ only in the PIVTNG and PACK
parameters, then the matrices generated will differ only
in the order of the rows and/or columns, and otherwise
contain the same data. This consistency cannot be
maintained with less than full bandwidth.
IPIVOT - INTEGER array, dimension (N or M)
This array specifies the permutation used. After the
basic matrix is generated, the rows, columns, or both
are permuted. If, say, row pivoting is selected, ZLATMR
starts with the *last* row and interchanges the M-th and
IPIVOT(M)-th rows, then moves to the next-to-last row,
interchanging the (M-1)-th and the IPIVOT(M-1)-th rows,
and so on. In terms of "2-cycles", the permutation is
(1 IPIVOT(1)) (2 IPIVOT(2)) ... (M IPIVOT(M))
where the rightmost cycle is applied first. This is the
*inverse* of the effect of pivoting in LINPACK. The idea
is that factoring (with pivoting) an identity matrix
which has been inverse-pivoted in this way should
result in a pivot vector identical to IPIVOT.
Not referenced if PIVTNG = 'N'. Not modified.
SPARSE - DOUBLE PRECISION
On entry specifies the sparsity of the matrix if a sparse
matrix is to be generated. SPARSE should lie between
0 and 1. To generate a sparse matrix, for each matrix entry
a uniform ( 0, 1 ) random number x is generated and
compared to SPARSE; if x is larger the matrix entry
is unchanged and if x is smaller the entry is set
to zero. Thus on the average a fraction SPARSE of the
entries will be set to zero.
Not modified.
KL - INTEGER
On entry specifies the lower bandwidth of the matrix. For
example, KL=0 implies upper triangular, KL=1 implies upper
Hessenberg, and KL at least M-1 implies the matrix is not
banded. Must equal KU if matrix is symmetric or Hermitian.
Not modified.
KU - INTEGER
On entry specifies the upper bandwidth of the matrix. For
example, KU=0 implies lower triangular, KU=1 implies lower
Hessenberg, and KU at least N-1 implies the matrix is not
banded. Must equal KL if matrix is symmetric or Hermitian.
Not modified.
ANORM - DOUBLE PRECISION
On entry specifies maximum entry of output matrix
(output matrix will by multiplied by a constant so that
its largest absolute entry equal ANORM)
if ANORM is nonnegative. If ANORM is negative no scaling
is done. Not modified.
PACK - CHARACTER*1
On entry specifies packing of matrix as follows:
'N' => no packing
'U' => zero out all subdiagonal entries
(if symmetric or Hermitian)
'L' => zero out all superdiagonal entries
(if symmetric or Hermitian)
'C' => store the upper triangle columnwise
(only if matrix symmetric or Hermitian or
square upper triangular)
'R' => store the lower triangle columnwise
(only if matrix symmetric or Hermitian or
square lower triangular)
(same as upper half rowwise if symmetric)
(same as conjugate upper half rowwise if Hermitian)
'B' => store the lower triangle in band storage scheme
(only if matrix symmetric or Hermitian)
'Q' => store the upper triangle in band storage scheme
(only if matrix symmetric or Hermitian)
'Z' => store the entire matrix in band storage scheme
(pivoting can be provided for by using this
option to store A in the trailing rows of
the allocated storage)
Using these options, the various LAPACK packed and banded
storage schemes can be obtained:
GB - use 'Z'
PB, HB or TB - use 'B' or 'Q'
PP, HP or TP - use 'C' or 'R'
If two calls to ZLATMR differ only in the PACK parameter,
they will generate mathematically equivalent matrices.
Not modified.
A - COMPLEX*16 array, dimension (LDA,N)
On exit A is the desired test matrix. Only those
entries of A which are significant on output
will be referenced (even if A is in packed or band
storage format). The 'unoccupied corners' of A in
band format will be zeroed out.
LDA - INTEGER
on entry LDA specifies the first dimension of A as
declared in the calling program.
If PACK='N', 'U' or 'L', LDA must be at least max ( 1, M ).
If PACK='C' or 'R', LDA must be at least 1.
If PACK='B', or 'Q', LDA must be MIN ( KU+1, N )
If PACK='Z', LDA must be at least KUU+KLL+1, where
KUU = MIN ( KU, N-1 ) and KLL = MIN ( KL, N-1 )
Not modified.
IWORK - INTEGER array, dimension (N or M)
Workspace. Not referenced if PIVTNG = 'N'. Changed on exit.
INFO - INTEGER
Error parameter on exit:
0 => normal return
-1 => M negative or unequal to N and SYM='S' or 'H'
-2 => N negative
-3 => DIST illegal string
-5 => SYM illegal string
-7 => MODE not in range -6 to 6
-8 => COND less than 1.0, and MODE neither -6, 0 nor 6
-10 => MODE neither -6, 0 nor 6 and RSIGN illegal string
-11 => GRADE illegal string, or GRADE='E' and
M not equal to N, or GRADE='L', 'R', 'B', 'S' or 'E'
and SYM = 'H', or GRADE='L', 'R', 'B', 'H' or 'E'
and SYM = 'S'
-12 => GRADE = 'E' and DL contains zero
-13 => MODEL not in range -6 to 6 and GRADE= 'L', 'B', 'H',
'S' or 'E'
-14 => CONDL less than 1.0, GRADE='L', 'B', 'H', 'S' or 'E',
and MODEL neither -6, 0 nor 6
-16 => MODER not in range -6 to 6 and GRADE= 'R' or 'B'
-17 => CONDR less than 1.0, GRADE='R' or 'B', and
MODER neither -6, 0 nor 6
-18 => PIVTNG illegal string, or PIVTNG='B' or 'F' and
M not equal to N, or PIVTNG='L' or 'R' and SYM='S'
or 'H'
-19 => IPIVOT contains out of range number and
PIVTNG not equal to 'N'
-20 => KL negative
-21 => KU negative, or SYM='S' or 'H' and KU not equal to KL
-22 => SPARSE not in range 0. to 1.
-24 => PACK illegal string, or PACK='U', 'L', 'B' or 'Q'
and SYM='N', or PACK='C' and SYM='N' and either KL
not equal to 0 or N not equal to M, or PACK='R' and
SYM='N', and either KU not equal to 0 or N not equal
to M
-26 => LDA too small
1 => Error return from ZLATM1 (computing D)
2 => Cannot scale diagonal to DMAX (max. entry is 0)
3 => Error return from ZLATM1 (computing DL)
4 => Error return from ZLATM1 (computing DR)
5 => ANORM is positive, but matrix constructed prior to
attempting to scale it to have norm ANORM, is zero
=====================================================================
1) Decode and Test the input parameters.
Initialize flags & seed.
Parameter adjustments */
--iseed;
--d;
--dl;
--dr;
--ipivot;
a_dim1 = *lda;
a_offset = a_dim1 + 1;
a -= a_offset;
--iwork;
/* Function Body */
*info = 0;
/* Quick return if possible */
if (*m == 0 || *n == 0) {
return 0;
}
/* Decode DIST */
if (lsame_(dist, "U")) {
idist = 1;
} else if (lsame_(dist, "S")) {
idist = 2;
} else if (lsame_(dist, "N")) {
idist = 3;
} else if (lsame_(dist, "D")) {
idist = 4;
} else {
idist = -1;
}
/* Decode SYM */
if (lsame_(sym, "H")) {
isym = 0;
} else if (lsame_(sym, "N")) {
isym = 1;
} else if (lsame_(sym, "S")) {
isym = 2;
} else {
isym = -1;
}
/* Decode RSIGN */
if (lsame_(rsign, "F")) {
irsign = 0;
} else if (lsame_(rsign, "T")) {
irsign = 1;
} else {
irsign = -1;
}
/* Decode PIVTNG */
if (lsame_(pivtng, "N")) {
ipvtng = 0;
} else if (lsame_(pivtng, " ")) {
ipvtng = 0;
} else if (lsame_(pivtng, "L")) {
ipvtng = 1;
npvts = *m;
} else if (lsame_(pivtng, "R")) {
ipvtng = 2;
npvts = *n;
} else if (lsame_(pivtng, "B")) {
ipvtng = 3;
npvts = min(*n,*m);
} else if (lsame_(pivtng, "F")) {
ipvtng = 3;
npvts = min(*n,*m);
} else {
ipvtng = -1;
}
/* Decode GRADE */
if (lsame_(grade, "N")) {
igrade = 0;
} else if (lsame_(grade, "L")) {
igrade = 1;
} else if (lsame_(grade, "R")) {
igrade = 2;
} else if (lsame_(grade, "B")) {
igrade = 3;
} else if (lsame_(grade, "E")) {
igrade = 4;
} else if (lsame_(grade, "H")) {
igrade = 5;
} else if (lsame_(grade, "S")) {
igrade = 6;
} else {
igrade = -1;
}
/* Decode PACK */
if (lsame_(pack, "N")) {
ipack = 0;
} else if (lsame_(pack, "U")) {
ipack = 1;
} else if (lsame_(pack, "L")) {
ipack = 2;
} else if (lsame_(pack, "C")) {
ipack = 3;
} else if (lsame_(pack, "R")) {
ipack = 4;
} else if (lsame_(pack, "B")) {
ipack = 5;
} else if (lsame_(pack, "Q")) {
ipack = 6;
} else if (lsame_(pack, "Z")) {
ipack = 7;
} else {
ipack = -1;
}
/* Set certain internal parameters */
mnmin = min(*m,*n);
/* Computing MIN */
i__1 = *kl, i__2 = *m - 1;
kll = min(i__1,i__2);
/* Computing MIN */
i__1 = *ku, i__2 = *n - 1;
kuu = min(i__1,i__2);
/* If inv(DL) is used, check to see if DL has a zero entry. */
dzero = FALSE_;
if (igrade == 4 && *model == 0) {
i__1 = *m;
for (i = 1; i <= i__1; ++i) {
i__2 = i;
if (dl[i__2].r == 0. && dl[i__2].i == 0.) {
dzero = TRUE_;
}
/* L10: */
}
}
/* Check values in IPIVOT */
badpvt = FALSE_;
if (ipvtng > 0) {
i__1 = npvts;
for (j = 1; j <= i__1; ++j) {
if (ipivot[j] <= 0 || ipivot[j] > npvts) {
badpvt = TRUE_;
}
/* L20: */
}
}
/* Set INFO if an error */
if (*m < 0) {
*info = -1;
} else if (*m != *n && (isym == 0 || isym == 2)) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (idist == -1) {
*info = -3;
} else if (isym == -1) {
*info = -5;
} else if (*mode < -6 || *mode > 6) {
*info = -7;
} else if (*mode != -6 && *mode != 0 && *mode != 6 && *cond < 1.) {
*info = -8;
} else if (*mode != -6 && *mode != 0 && *mode != 6 && irsign == -1) {
*info = -10;
} else if (igrade == -1 || igrade == 4 && *m != *n || (igrade == 1 ||
igrade == 2 || igrade == 3 || igrade == 4 || igrade == 6) && isym
== 0 || (igrade == 1 || igrade == 2 || igrade == 3 || igrade == 4
|| igrade == 5) && isym == 2) {
*info = -11;
} else if (igrade == 4 && dzero) {
*info = -12;
} else if ((igrade == 1 || igrade == 3 || igrade == 4 || igrade == 5 ||
igrade == 6) && (*model < -6 || *model > 6)) {
*info = -13;
} else if ((igrade == 1 || igrade == 3 || igrade == 4 || igrade == 5 ||
igrade == 6) && (*model != -6 && *model != 0 && *model != 6) && *
condl < 1.) {
*info = -14;
} else if ((igrade == 2 || igrade == 3) && (*moder < -6 || *moder > 6)) {
*info = -16;
} else if ((igrade == 2 || igrade == 3) && (*moder != -6 && *moder != 0 &&
*moder != 6) && *condr < 1.) {
*info = -17;
} else if (ipvtng == -1 || ipvtng == 3 && *m != *n || (ipvtng == 1 ||
ipvtng == 2) && (isym == 0 || isym == 2)) {
*info = -18;
} else if (ipvtng != 0 && badpvt) {
*info = -19;
} else if (*kl < 0) {
*info = -20;
} else if (*ku < 0 || (isym == 0 || isym == 2) && *kl != *ku) {
*info = -21;
} else if (*sparse < 0. || *sparse > 1.) {
*info = -22;
} else if (ipack == -1 || (ipack == 1 || ipack == 2 || ipack == 5 ||
ipack == 6) && isym == 1 || ipack == 3 && isym == 1 && (*kl != 0
|| *m != *n) || ipack == 4 && isym == 1 && (*ku != 0 || *m != *n))
{
*info = -24;
} else if ((ipack == 0 || ipack == 1 || ipack == 2) && *lda < max(1,*m) ||
(ipack == 3 || ipack == 4) && *lda < 1 || (ipack == 5 || ipack ==
6) && *lda < kuu + 1 || ipack == 7 && *lda < kll + kuu + 1) {
*info = -26;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZLATMR", &i__1);
return 0;
}
/* Decide if we can pivot consistently */
fulbnd = FALSE_;
if (kuu == *n - 1 && kll == *m - 1) {
fulbnd = TRUE_;
}
/* Initialize random number generator */
for (i = 1; i <= 4; ++i) {
iseed[i] = (i__1 = iseed[i], abs(i__1)) % 4096;
/* L30: */
}
iseed[4] = (iseed[4] / 2 << 1) + 1;
/* 2) Set up D, DL, and DR, if indicated.
Compute D according to COND and MODE */
zlatm1_(mode, cond, &irsign, &idist, &iseed[1], &d[1], &mnmin, info);
if (*info != 0) {
*info = 1;
return 0;
}
if (*mode != 0 && *mode != -6 && *mode != 6) {
/* Scale by DMAX */
temp = z_abs(&d[1]);
i__1 = mnmin;
for (i = 2; i <= i__1; ++i) {
/* Computing MAX */
d__1 = temp, d__2 = z_abs(&d[i]);
temp = max(d__1,d__2);
/* L40: */
}
if (temp == 0. && (dmax__->r != 0. || dmax__->i != 0.)) {
*info = 2;
return 0;
}
if (temp != 0.) {
z__1.r = dmax__->r / temp, z__1.i = dmax__->i / temp;
calpha.r = z__1.r, calpha.i = z__1.i;
} else {
calpha.r = 1., calpha.i = 0.;
}
i__1 = mnmin;
for (i = 1; i <= i__1; ++i) {
i__2 = i;
i__3 = i;
z__1.r = calpha.r * d[i__3].r - calpha.i * d[i__3].i, z__1.i =
calpha.r * d[i__3].i + calpha.i * d[i__3].r;
d[i__2].r = z__1.r, d[i__2].i = z__1.i;
/* L50: */
}
}
/* If matrix Hermitian, make D real */
if (isym == 0) {
i__1 = mnmin;
for (i = 1; i <= i__1; ++i) {
i__2 = i;
i__3 = i;
d__1 = d[i__3].r;
d[i__2].r = d__1, d[i__2].i = 0.;
/* L60: */
}
}
/* Compute DL if grading set */
if (igrade == 1 || igrade == 3 || igrade == 4 || igrade == 5 || igrade ==
6) {
zlatm1_(model, condl, &c__0, &idist, &iseed[1], &dl[1], m, info);
if (*info != 0) {
*info = 3;
return 0;
}
}
/* Compute DR if grading set */
if (igrade == 2 || igrade == 3) {
zlatm1_(moder, condr, &c__0, &idist, &iseed[1], &dr[1], n, info);
if (*info != 0) {
*info = 4;
return 0;
}
}
/* 3) Generate IWORK if pivoting */
if (ipvtng > 0) {
i__1 = npvts;
for (i = 1; i <= i__1; ++i) {
iwork[i] = i;
/* L70: */
}
if (fulbnd) {
i__1 = npvts;
for (i = 1; i <= i__1; ++i) {
k = ipivot[i];
j = iwork[i];
iwork[i] = iwork[k];
iwork[k] = j;
/* L80: */
}
} else {
for (i = npvts; i >= 1; --i) {
k = ipivot[i];
j = iwork[i];
iwork[i] = iwork[k];
iwork[k] = j;
/* L90: */
}
}
}
/* 4) Generate matrices for each kind of PACKing
Always sweep matrix columnwise (if symmetric, upper
half only) so that matrix generated does not depend
on PACK */
if (fulbnd) {
/* Use ZLATM3 so matrices generated with differing PIVOTing onl
y
differ only in the order of their rows and/or columns. */
if (ipack == 0) {
if (isym == 0) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
zlatm3_(&z__1, m, n, &i, &j, &isub, &jsub, kl, ku, &
idist, &iseed[1], &d[1], &igrade, &dl[1], &dr[
1], &ipvtng, &iwork[1], sparse);
ctemp.r = z__1.r, ctemp.i = z__1.i;
i__3 = isub + jsub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
i__3 = jsub + isub * a_dim1;
d_cnjg(&z__1, &ctemp);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
/* L100: */
}
/* L110: */
}
} else if (isym == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i = 1; i <= i__2; ++i) {
zlatm3_(&z__1, m, n, &i, &j, &isub, &jsub, kl, ku, &
idist, &iseed[1], &d[1], &igrade, &dl[1], &dr[
1], &ipvtng, &iwork[1], sparse);
ctemp.r = z__1.r, ctemp.i = z__1.i;
i__3 = isub + jsub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
/* L120: */
}
/* L130: */
}
} else if (isym == 2) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
zlatm3_(&z__1, m, n, &i, &j, &isub, &jsub, kl, ku, &
idist, &iseed[1], &d[1], &igrade, &dl[1], &dr[
1], &ipvtng, &iwork[1], sparse);
ctemp.r = z__1.r, ctemp.i = z__1.i;
i__3 = isub + jsub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
i__3 = jsub + isub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
/* L140: */
}
/* L150: */
}
}
} else if (ipack == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
zlatm3_(&z__1, m, n, &i, &j, &isub, &jsub, kl, ku, &idist,
&iseed[1], &d[1], &igrade, &dl[1], &dr[1], &
ipvtng, &iwork[1], sparse);
ctemp.r = z__1.r, ctemp.i = z__1.i;
mnsub = min(isub,jsub);
mxsub = max(isub,jsub);
if (mxsub == isub && isym == 0) {
i__3 = mnsub + mxsub * a_dim1;
d_cnjg(&z__1, &ctemp);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
} else {
i__3 = mnsub + mxsub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
}
if (mnsub != mxsub) {
i__3 = mxsub + mnsub * a_dim1;
a[i__3].r = 0., a[i__3].i = 0.;
}
/* L160: */
}
/* L170: */
}
} else if (ipack == 2) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
zlatm3_(&z__1, m, n, &i, &j, &isub, &jsub, kl, ku, &idist,
&iseed[1], &d[1], &igrade, &dl[1], &dr[1], &
ipvtng, &iwork[1], sparse);
ctemp.r = z__1.r, ctemp.i = z__1.i;
mnsub = min(isub,jsub);
mxsub = max(isub,jsub);
if (mxsub == jsub && isym == 0) {
i__3 = mxsub + mnsub * a_dim1;
d_cnjg(&z__1, &ctemp);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
} else {
i__3 = mxsub + mnsub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
}
if (mnsub != mxsub) {
i__3 = mnsub + mxsub * a_dim1;
a[i__3].r = 0., a[i__3].i = 0.;
}
/* L180: */
}
/* L190: */
}
} else if (ipack == 3) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
zlatm3_(&z__1, m, n, &i, &j, &isub, &jsub, kl, ku, &idist,
&iseed[1], &d[1], &igrade, &dl[1], &dr[1], &
ipvtng, &iwork[1], sparse);
ctemp.r = z__1.r, ctemp.i = z__1.i;
/* Compute K = location of (ISUB,JSUB) ent
ry in packed
array */
mnsub = min(isub,jsub);
mxsub = max(isub,jsub);
k = mxsub * (mxsub - 1) / 2 + mnsub;
/* Convert K to (IISUB,JJSUB) location */
jjsub = (k - 1) / *lda + 1;
iisub = k - *lda * (jjsub - 1);
if (mxsub == isub && isym == 0) {
i__3 = iisub + jjsub * a_dim1;
d_cnjg(&z__1, &ctemp);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
} else {
i__3 = iisub + jjsub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
}
/* L200: */
}
/* L210: */
}
} else if (ipack == 4) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
zlatm3_(&z__1, m, n, &i, &j, &isub, &jsub, kl, ku, &idist,
&iseed[1], &d[1], &igrade, &dl[1], &dr[1], &
ipvtng, &iwork[1], sparse);
ctemp.r = z__1.r, ctemp.i = z__1.i;
/* Compute K = location of (I,J) entry in
packed array */
mnsub = min(isub,jsub);
mxsub = max(isub,jsub);
if (mnsub == 1) {
k = mxsub;
} else {
k = *n * (*n + 1) / 2 - (*n - mnsub + 1) * (*n -
mnsub + 2) / 2 + mxsub - mnsub + 1;
}
/* Convert K to (IISUB,JJSUB) location */
jjsub = (k - 1) / *lda + 1;
iisub = k - *lda * (jjsub - 1);
if (mxsub == jsub && isym == 0) {
i__3 = iisub + jjsub * a_dim1;
d_cnjg(&z__1, &ctemp);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
} else {
i__3 = iisub + jjsub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
}
/* L220: */
}
/* L230: */
}
} else if (ipack == 5) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = j - kuu; i <= i__2; ++i) {
if (i < 1) {
i__3 = j - i + 1 + (i + *n) * a_dim1;
a[i__3].r = 0., a[i__3].i = 0.;
} else {
zlatm3_(&z__1, m, n, &i, &j, &isub, &jsub, kl, ku, &
idist, &iseed[1], &d[1], &igrade, &dl[1], &dr[
1], &ipvtng, &iwork[1], sparse);
ctemp.r = z__1.r, ctemp.i = z__1.i;
mnsub = min(isub,jsub);
mxsub = max(isub,jsub);
if (mxsub == jsub && isym == 0) {
i__3 = mxsub - mnsub + 1 + mnsub * a_dim1;
d_cnjg(&z__1, &ctemp);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
} else {
i__3 = mxsub - mnsub + 1 + mnsub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
}
}
/* L240: */
}
/* L250: */
}
} else if (ipack == 6) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = j - kuu; i <= i__2; ++i) {
zlatm3_(&z__1, m, n, &i, &j, &isub, &jsub, kl, ku, &idist,
&iseed[1], &d[1], &igrade, &dl[1], &dr[1], &
ipvtng, &iwork[1], sparse);
ctemp.r = z__1.r, ctemp.i = z__1.i;
mnsub = min(isub,jsub);
mxsub = max(isub,jsub);
if (mxsub == isub && isym == 0) {
i__3 = mnsub - mxsub + kuu + 1 + mxsub * a_dim1;
d_cnjg(&z__1, &ctemp);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
} else {
i__3 = mnsub - mxsub + kuu + 1 + mxsub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
}
/* L260: */
}
/* L270: */
}
} else if (ipack == 7) {
if (isym != 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = j - kuu; i <= i__2; ++i) {
zlatm3_(&z__1, m, n, &i, &j, &isub, &jsub, kl, ku, &
idist, &iseed[1], &d[1], &igrade, &dl[1], &dr[
1], &ipvtng, &iwork[1], sparse);
ctemp.r = z__1.r, ctemp.i = z__1.i;
mnsub = min(isub,jsub);
mxsub = max(isub,jsub);
if (i < 1) {
i__3 = j - i + 1 + kuu + (i + *n) * a_dim1;
a[i__3].r = 0., a[i__3].i = 0.;
}
if (mxsub == isub && isym == 0) {
i__3 = mnsub - mxsub + kuu + 1 + mxsub * a_dim1;
d_cnjg(&z__1, &ctemp);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
} else {
i__3 = mnsub - mxsub + kuu + 1 + mxsub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
}
if (i >= 1 && mnsub != mxsub) {
if (mnsub == isub && isym == 0) {
i__3 = mxsub - mnsub + 1 + kuu + mnsub *
a_dim1;
d_cnjg(&z__1, &ctemp);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
} else {
i__3 = mxsub - mnsub + 1 + kuu + mnsub *
a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
}
}
/* L280: */
}
/* L290: */
}
} else if (isym == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j + kll;
for (i = j - kuu; i <= i__2; ++i) {
zlatm3_(&z__1, m, n, &i, &j, &isub, &jsub, kl, ku, &
idist, &iseed[1], &d[1], &igrade, &dl[1], &dr[
1], &ipvtng, &iwork[1], sparse);
ctemp.r = z__1.r, ctemp.i = z__1.i;
i__3 = isub - jsub + kuu + 1 + jsub * a_dim1;
a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
/* L300: */
}
/* L310: */
}
}
}
} else {
/* Use ZLATM2 */
if (ipack == 0) {
if (isym == 0) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
i__3 = i + j * a_dim1;
zlatm2_(&z__1, m, n, &i, &j, kl, ku, &idist, &iseed[1]
, &d[1], &igrade, &dl[1], &dr[1], &ipvtng, &
iwork[1], sparse);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
i__3 = j + i * a_dim1;
d_cnjg(&z__1, &a[i + j * a_dim1]);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
/* L320: */
}
/* L330: */
}
} else if (isym == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i = 1; i <= i__2; ++i) {
i__3 = i + j * a_dim1;
zlatm2_(&z__1, m, n, &i, &j, kl, ku, &idist, &iseed[1]
, &d[1], &igrade, &dl[1], &dr[1], &ipvtng, &
iwork[1], sparse);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
/* L340: */
}
/* L350: */
}
} else if (isym == 2) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
i__3 = i + j * a_dim1;
zlatm2_(&z__1, m, n, &i, &j, kl, ku, &idist, &iseed[1]
, &d[1], &igrade, &dl[1], &dr[1], &ipvtng, &
iwork[1], sparse);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
i__3 = j + i * a_dim1;
i__4 = i + j * a_dim1;
a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i;
/* L360: */
}
/* L370: */
}
}
} else if (ipack == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
i__3 = i + j * a_dim1;
zlatm2_(&z__1, m, n, &i, &j, kl, ku, &idist, &iseed[1], &
d[1], &igrade, &dl[1], &dr[1], &ipvtng, &iwork[1],
sparse);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
if (i != j) {
i__3 = j + i * a_dim1;
a[i__3].r = 0., a[i__3].i = 0.;
}
/* L380: */
}
/* L390: */
}
} else if (ipack == 2) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
if (isym == 0) {
i__3 = j + i * a_dim1;
zlatm2_(&z__2, m, n, &i, &j, kl, ku, &idist, &iseed[1]
, &d[1], &igrade, &dl[1], &dr[1], &ipvtng, &
iwork[1], sparse);
d_cnjg(&z__1, &z__2);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
} else {
i__3 = j + i * a_dim1;
zlatm2_(&z__1, m, n, &i, &j, kl, ku, &idist, &iseed[1]
, &d[1], &igrade, &dl[1], &dr[1], &ipvtng, &
iwork[1], sparse);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
}
if (i != j) {
i__3 = i + j * a_dim1;
a[i__3].r = 0., a[i__3].i = 0.;
}
/* L400: */
}
/* L410: */
}
} else if (ipack == 3) {
isub = 0;
jsub = 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
++isub;
if (isub > *lda) {
isub = 1;
++jsub;
}
i__3 = isub + jsub * a_dim1;
zlatm2_(&z__1, m, n, &i, &j, kl, ku, &idist, &iseed[1], &
d[1], &igrade, &dl[1], &dr[1], &ipvtng, &iwork[1],
sparse);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
/* L420: */
}
/* L430: */
}
} else if (ipack == 4) {
if (isym == 0 || isym == 2) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = 1; i <= i__2; ++i) {
/* Compute K = location of (I,J) en
try in packed array */
if (i == 1) {
k = j;
} else {
k = *n * (*n + 1) / 2 - (*n - i + 1) * (*n - i +
2) / 2 + j - i + 1;
}
/* Convert K to (ISUB,JSUB) locatio
n */
jsub = (k - 1) / *lda + 1;
isub = k - *lda * (jsub - 1);
i__3 = isub + jsub * a_dim1;
zlatm2_(&z__1, m, n, &i, &j, kl, ku, &idist, &iseed[1]
, &d[1], &igrade, &dl[1], &dr[1], &ipvtng, &
iwork[1], sparse);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
if (isym == 0) {
i__3 = isub + jsub * a_dim1;
d_cnjg(&z__1, &a[isub + jsub * a_dim1]);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
}
/* L440: */
}
/* L450: */
}
} else {
isub = 0;
jsub = 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i = j; i <= i__2; ++i) {
++isub;
if (isub > *lda) {
isub = 1;
++jsub;
}
i__3 = isub + jsub * a_dim1;
zlatm2_(&z__1, m, n, &i, &j, kl, ku, &idist, &iseed[1]
, &d[1], &igrade, &dl[1], &dr[1], &ipvtng, &
iwork[1], sparse);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
/* L460: */
}
/* L470: */
}
}
} else if (ipack == 5) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = j - kuu; i <= i__2; ++i) {
if (i < 1) {
i__3 = j - i + 1 + (i + *n) * a_dim1;
a[i__3].r = 0., a[i__3].i = 0.;
} else {
if (isym == 0) {
i__3 = j - i + 1 + i * a_dim1;
zlatm2_(&z__2, m, n, &i, &j, kl, ku, &idist, &
iseed[1], &d[1], &igrade, &dl[1], &dr[1],
&ipvtng, &iwork[1], sparse);
d_cnjg(&z__1, &z__2);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
} else {
i__3 = j - i + 1 + i * a_dim1;
zlatm2_(&z__1, m, n, &i, &j, kl, ku, &idist, &
iseed[1], &d[1], &igrade, &dl[1], &dr[1],
&ipvtng, &iwork[1], sparse);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
}
}
/* L480: */
}
/* L490: */
}
} else if (ipack == 6) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = j - kuu; i <= i__2; ++i) {
i__3 = i - j + kuu + 1 + j * a_dim1;
zlatm2_(&z__1, m, n, &i, &j, kl, ku, &idist, &iseed[1], &
d[1], &igrade, &dl[1], &dr[1], &ipvtng, &iwork[1],
sparse);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
/* L500: */
}
/* L510: */
}
} else if (ipack == 7) {
if (isym != 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i = j - kuu; i <= i__2; ++i) {
i__3 = i - j + kuu + 1 + j * a_dim1;
zlatm2_(&z__1, m, n, &i, &j, kl, ku, &idist, &iseed[1]
, &d[1], &igrade, &dl[1], &dr[1], &ipvtng, &
iwork[1], sparse);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
if (i < 1) {
i__3 = j - i + 1 + kuu + (i + *n) * a_dim1;
a[i__3].r = 0., a[i__3].i = 0.;
}
if (i >= 1 && i != j) {
if (isym == 0) {
i__3 = j - i + 1 + kuu + i * a_dim1;
d_cnjg(&z__1, &a[i - j + kuu + 1 + j * a_dim1]
);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
} else {
i__3 = j - i + 1 + kuu + i * a_dim1;
i__4 = i - j + kuu + 1 + j * a_dim1;
a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i;
}
}
/* L520: */
}
/* L530: */
}
} else if (isym == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j + kll;
for (i = j - kuu; i <= i__2; ++i) {
i__3 = i - j + kuu + 1 + j * a_dim1;
zlatm2_(&z__1, m, n, &i, &j, kl, ku, &idist, &iseed[1]
, &d[1], &igrade, &dl[1], &dr[1], &ipvtng, &
iwork[1], sparse);
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
/* L540: */
}
/* L550: */
}
}
}
}
/* 5) Scaling the norm */
if (ipack == 0) {
onorm = zlange_("M", m, n, &a[a_offset], lda, tempa);
} else if (ipack == 1) {
onorm = zlansy_("M", "U", n, &a[a_offset], lda, tempa);
} else if (ipack == 2) {
onorm = zlansy_("M", "L", n, &a[a_offset], lda, tempa);
} else if (ipack == 3) {
onorm = zlansp_("M", "U", n, &a[a_offset], tempa);
} else if (ipack == 4) {
onorm = zlansp_("M", "L", n, &a[a_offset], tempa);
} else if (ipack == 5) {
onorm = zlansb_("M", "L", n, &kll, &a[a_offset], lda, tempa);
} else if (ipack == 6) {
onorm = zlansb_("M", "U", n, &kuu, &a[a_offset], lda, tempa);
} else if (ipack == 7) {
onorm = zlangb_("M", n, &kll, &kuu, &a[a_offset], lda, tempa);
}
if (*anorm >= 0.) {
if (*anorm > 0. && onorm == 0.) {
/* Desired scaling impossible */
*info = 5;
return 0;
} else if (*anorm > 1. && onorm < 1. || *anorm < 1. && onorm > 1.) {
/* Scale carefully to avoid over / underflow */
if (ipack <= 2) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
d__1 = 1. / onorm;
zdscal_(m, &d__1, &a[j * a_dim1 + 1], &c__1);
zdscal_(m, anorm, &a[j * a_dim1 + 1], &c__1);
/* L560: */
}
} else if (ipack == 3 || ipack == 4) {
i__1 = *n * (*n + 1) / 2;
d__1 = 1. / onorm;
zdscal_(&i__1, &d__1, &a[a_offset], &c__1);
i__1 = *n * (*n + 1) / 2;
zdscal_(&i__1, anorm, &a[a_offset], &c__1);
} else if (ipack >= 5) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = kll + kuu + 1;
d__1 = 1. / onorm;
zdscal_(&i__2, &d__1, &a[j * a_dim1 + 1], &c__1);
i__2 = kll + kuu + 1;
zdscal_(&i__2, anorm, &a[j * a_dim1 + 1], &c__1);
/* L570: */
}
}
} else {
/* Scale straightforwardly */
if (ipack <= 2) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
d__1 = *anorm / onorm;
zdscal_(m, &d__1, &a[j * a_dim1 + 1], &c__1);
/* L580: */
}
} else if (ipack == 3 || ipack == 4) {
i__1 = *n * (*n + 1) / 2;
d__1 = *anorm / onorm;
zdscal_(&i__1, &d__1, &a[a_offset], &c__1);
} else if (ipack >= 5) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = kll + kuu + 1;
d__1 = *anorm / onorm;
zdscal_(&i__2, &d__1, &a[j * a_dim1 + 1], &c__1);
/* L590: */
}
}
}
}
/* End of ZLATMR */
return 0;
} /* zlatmr_ */
|