1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
/* -- translated by f2c (version 19940927).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Subroutine */ int cgerc_(integer *m, integer *n, complex *alpha, complex *
x, integer *incx, complex *y, integer *incy, complex *a, integer *lda)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
complex q__1, q__2;
/* Builtin functions */
void r_cnjg(complex *, complex *);
/* Local variables */
static integer info;
static complex temp;
static integer i, j, ix, jy, kx;
extern /* Subroutine */ int xerbla_(char *, integer *);
/* Purpose
=======
CGERC performs the rank 1 operation
A := alpha*x*conjg( y' ) + A,
where alpha is a scalar, x is an m element vector, y is an n element
vector and A is an m by n matrix.
Parameters
==========
M - INTEGER.
On entry, M specifies the number of rows of the matrix A.
M must be at least zero.
Unchanged on exit.
N - INTEGER.
On entry, N specifies the number of columns of the matrix A.
N must be at least zero.
Unchanged on exit.
ALPHA - COMPLEX .
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.
X - COMPLEX array of dimension at least
( 1 + ( m - 1 )*abs( INCX ) ).
Before entry, the incremented array X must contain the m
element vector x.
Unchanged on exit.
INCX - INTEGER.
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.
Unchanged on exit.
Y - COMPLEX array of dimension at least
( 1 + ( n - 1 )*abs( INCY ) ).
Before entry, the incremented array Y must contain the n
element vector y.
Unchanged on exit.
INCY - INTEGER.
On entry, INCY specifies the increment for the elements of
Y. INCY must not be zero.
Unchanged on exit.
A - COMPLEX array of DIMENSION ( LDA, n ).
Before entry, the leading m by n part of the array A must
contain the matrix of coefficients. On exit, A is
overwritten by the updated matrix.
LDA - INTEGER.
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. LDA must be at least
max( 1, m ).
Unchanged on exit.
Level 2 Blas routine.
-- Written on 22-October-1986.
Jack Dongarra, Argonne National Lab.
Jeremy Du Croz, Nag Central Office.
Sven Hammarling, Nag Central Office.
Richard Hanson, Sandia National Labs.
Test the input parameters.
Parameter adjustments
Function Body */
#define X(I) x[(I)-1]
#define Y(I) y[(I)-1]
#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]
info = 0;
if (*m < 0) {
info = 1;
} else if (*n < 0) {
info = 2;
} else if (*incx == 0) {
info = 5;
} else if (*incy == 0) {
info = 7;
} else if (*lda < max(1,*m)) {
info = 9;
}
if (info != 0) {
xerbla_("CGERC ", &info);
return 0;
}
/* Quick return if possible. */
if (*m == 0 || *n == 0 || alpha->r == 0.f && alpha->i == 0.f) {
return 0;
}
/* Start the operations. In this version the elements of A are
accessed sequentially with one pass through A. */
if (*incy > 0) {
jy = 1;
} else {
jy = 1 - (*n - 1) * *incy;
}
if (*incx == 1) {
i__1 = *n;
for (j = 1; j <= *n; ++j) {
i__2 = jy;
if (Y(jy).r != 0.f || Y(jy).i != 0.f) {
r_cnjg(&q__2, &Y(jy));
q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, q__1.i =
alpha->r * q__2.i + alpha->i * q__2.r;
temp.r = q__1.r, temp.i = q__1.i;
i__2 = *m;
for (i = 1; i <= *m; ++i) {
i__3 = i + j * a_dim1;
i__4 = i + j * a_dim1;
i__5 = i;
q__2.r = X(i).r * temp.r - X(i).i * temp.i, q__2.i =
X(i).r * temp.i + X(i).i * temp.r;
q__1.r = A(i,j).r + q__2.r, q__1.i = A(i,j).i + q__2.i;
A(i,j).r = q__1.r, A(i,j).i = q__1.i;
/* L10: */
}
}
jy += *incy;
/* L20: */
}
} else {
if (*incx > 0) {
kx = 1;
} else {
kx = 1 - (*m - 1) * *incx;
}
i__1 = *n;
for (j = 1; j <= *n; ++j) {
i__2 = jy;
if (Y(jy).r != 0.f || Y(jy).i != 0.f) {
r_cnjg(&q__2, &Y(jy));
q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, q__1.i =
alpha->r * q__2.i + alpha->i * q__2.r;
temp.r = q__1.r, temp.i = q__1.i;
ix = kx;
i__2 = *m;
for (i = 1; i <= *m; ++i) {
i__3 = i + j * a_dim1;
i__4 = i + j * a_dim1;
i__5 = ix;
q__2.r = X(ix).r * temp.r - X(ix).i * temp.i, q__2.i =
X(ix).r * temp.i + X(ix).i * temp.r;
q__1.r = A(i,j).r + q__2.r, q__1.i = A(i,j).i + q__2.i;
A(i,j).r = q__1.r, A(i,j).i = q__1.i;
ix += *incx;
/* L30: */
}
}
jy += *incy;
/* L40: */
}
}
return 0;
/* End of CGERC . */
} /* cgerc_ */
|