1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
/* -- translated by f2c (version 19940927).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Subroutine */ int sgemv_(char *trans, integer *m, integer *n, real *alpha,
real *a, integer *lda, real *x, integer *incx, real *beta, real *y,
integer *incy)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
/* Local variables */
static integer info;
static real temp;
static integer lenx, leny, i, j;
extern logical lsame_(char *, char *);
static integer ix, iy, jx, jy, kx, ky;
extern /* Subroutine */ int xerbla_(char *, integer *);
/* Purpose
=======
SGEMV performs one of the matrix-vector operations
y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
where alpha and beta are scalars, x and y are vectors and A is an
m by n matrix.
Parameters
==========
TRANS - CHARACTER*1.
On entry, TRANS specifies the operation to be performed as
follows:
TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.
Unchanged on exit.
M - INTEGER.
On entry, M specifies the number of rows of the matrix A.
M must be at least zero.
Unchanged on exit.
N - INTEGER.
On entry, N specifies the number of columns of the matrix A.
N must be at least zero.
Unchanged on exit.
ALPHA - REAL .
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.
A - REAL array of DIMENSION ( LDA, n ).
Before entry, the leading m by n part of the array A must
contain the matrix of coefficients.
Unchanged on exit.
LDA - INTEGER.
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. LDA must be at least
max( 1, m ).
Unchanged on exit.
X - REAL array of DIMENSION at least
( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
and at least
( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
Before entry, the incremented array X must contain the
vector x.
Unchanged on exit.
INCX - INTEGER.
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.
Unchanged on exit.
BETA - REAL .
On entry, BETA specifies the scalar beta. When BETA is
supplied as zero then Y need not be set on input.
Unchanged on exit.
Y - REAL array of DIMENSION at least
( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
and at least
( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
Before entry with BETA non-zero, the incremented array Y
must contain the vector y. On exit, Y is overwritten by the
updated vector y.
INCY - INTEGER.
On entry, INCY specifies the increment for the elements of
Y. INCY must not be zero.
Unchanged on exit.
Level 2 Blas routine.
-- Written on 22-October-1986.
Jack Dongarra, Argonne National Lab.
Jeremy Du Croz, Nag Central Office.
Sven Hammarling, Nag Central Office.
Richard Hanson, Sandia National Labs.
Test the input parameters.
Parameter adjustments
Function Body */
#define X(I) x[(I)-1]
#define Y(I) y[(I)-1]
#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]
info = 0;
if (! lsame_(trans, "N") && ! lsame_(trans, "T") && !
lsame_(trans, "C")) {
info = 1;
} else if (*m < 0) {
info = 2;
} else if (*n < 0) {
info = 3;
} else if (*lda < max(1,*m)) {
info = 6;
} else if (*incx == 0) {
info = 8;
} else if (*incy == 0) {
info = 11;
}
if (info != 0) {
xerbla_("SGEMV ", &info);
return 0;
}
/* Quick return if possible. */
if (*m == 0 || *n == 0 || *alpha == 0.f && *beta == 1.f) {
return 0;
}
/* Set LENX and LENY, the lengths of the vectors x and y, and set
up the start points in X and Y. */
if (lsame_(trans, "N")) {
lenx = *n;
leny = *m;
} else {
lenx = *m;
leny = *n;
}
if (*incx > 0) {
kx = 1;
} else {
kx = 1 - (lenx - 1) * *incx;
}
if (*incy > 0) {
ky = 1;
} else {
ky = 1 - (leny - 1) * *incy;
}
/* Start the operations. In this version the elements of A are
accessed sequentially with one pass through A.
First form y := beta*y. */
if (*beta != 1.f) {
if (*incy == 1) {
if (*beta == 0.f) {
i__1 = leny;
for (i = 1; i <= leny; ++i) {
Y(i) = 0.f;
/* L10: */
}
} else {
i__1 = leny;
for (i = 1; i <= leny; ++i) {
Y(i) = *beta * Y(i);
/* L20: */
}
}
} else {
iy = ky;
if (*beta == 0.f) {
i__1 = leny;
for (i = 1; i <= leny; ++i) {
Y(iy) = 0.f;
iy += *incy;
/* L30: */
}
} else {
i__1 = leny;
for (i = 1; i <= leny; ++i) {
Y(iy) = *beta * Y(iy);
iy += *incy;
/* L40: */
}
}
}
}
if (*alpha == 0.f) {
return 0;
}
if (lsame_(trans, "N")) {
/* Form y := alpha*A*x + y. */
jx = kx;
if (*incy == 1) {
i__1 = *n;
for (j = 1; j <= *n; ++j) {
if (X(jx) != 0.f) {
temp = *alpha * X(jx);
i__2 = *m;
for (i = 1; i <= *m; ++i) {
Y(i) += temp * A(i,j);
/* L50: */
}
}
jx += *incx;
/* L60: */
}
} else {
i__1 = *n;
for (j = 1; j <= *n; ++j) {
if (X(jx) != 0.f) {
temp = *alpha * X(jx);
iy = ky;
i__2 = *m;
for (i = 1; i <= *m; ++i) {
Y(iy) += temp * A(i,j);
iy += *incy;
/* L70: */
}
}
jx += *incx;
/* L80: */
}
}
} else {
/* Form y := alpha*A'*x + y. */
jy = ky;
if (*incx == 1) {
i__1 = *n;
for (j = 1; j <= *n; ++j) {
temp = 0.f;
i__2 = *m;
for (i = 1; i <= *m; ++i) {
temp += A(i,j) * X(i);
/* L90: */
}
Y(jy) += *alpha * temp;
jy += *incy;
/* L100: */
}
} else {
i__1 = *n;
for (j = 1; j <= *n; ++j) {
temp = 0.f;
ix = kx;
i__2 = *m;
for (i = 1; i <= *m; ++i) {
temp += A(i,j) * X(ix);
ix += *incx;
/* L110: */
}
Y(jy) += *alpha * temp;
jy += *incy;
/* L120: */
}
}
}
return 0;
/* End of SGEMV . */
} /* sgemv_ */
|