1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
|
/*
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
*/
/*
* File name: ddrive.c
* Purpose: MAIN test program
*/
#include <string.h>
#include "slu_ddefs.h"
#define NTESTS 5 /* Number of test types */
#define NTYPES 11 /* Number of matrix types */
#define NTRAN 2
#define THRESH 20.0
#define FMT1 "%10s:n=%d, test(%d)=%12.5g\n"
#define FMT2 "%10s:fact=%4d, trans=%4d, equed=%c, n=%d, imat=%d, test(%d)=%12.5g\n"
#define FMT3 "%10s:info=%d, izero=%d, n=%d, nrhs=%d, imat=%d, nfail=%d\n"
static void
parse_command_line(int argc, char *argv[], char *matrix_type,
int *n, int *w, int *relax, int *nrhs, int *maxsuper,
int *rowblk, int *colblk, int *lwork, double *u);
main(int argc, char *argv[])
{
/*
* Purpose
* =======
*
* DDRIVE is the main test program for the DOUBLE linear
* equation driver routines DGSSV and DGSSVX.
*
* The program is invoked by a shell script file -- dtest.csh.
* The output from the tests are written into a file -- dtest.out.
*
* =====================================================================
*/
double *a, *a_save;
int *asub, *asub_save;
int *xa, *xa_save;
SuperMatrix A, B, X, L, U;
SuperMatrix ASAV, AC;
mem_usage_t mem_usage;
int *perm_r; /* row permutation from partial pivoting */
int *perm_c, *pc_save; /* column permutation */
int *etree;
double zero = 0.0;
double *R, *C;
double *ferr, *berr;
double *rwork;
double *wwork;
void *work;
int info, lwork, nrhs, panel_size, relax;
int m, n, nnz;
double *xact;
double *rhsb, *solx, *bsav;
int ldb, ldx;
double rpg, rcond;
int i, j, k1;
double rowcnd, colcnd, amax;
int maxsuper, rowblk, colblk;
int prefact, nofact, equil, iequed;
int nt, nrun, nfail, nerrs, imat, fimat, nimat;
int nfact, ifact, itran;
int kl, ku, mode, lda;
int zerot, izero, ioff;
double u;
double anorm, cndnum;
double *Afull;
double result[NTESTS];
superlu_options_t options;
fact_t fact;
trans_t trans;
SuperLUStat_t stat;
static char matrix_type[8];
static char equed[1], path[4], sym[1], dist[1];
/* Fixed set of parameters */
int iseed[] = {1988, 1989, 1990, 1991};
static char equeds[] = {'N', 'R', 'C', 'B'};
static fact_t facts[] = {FACTORED, DOFACT, SamePattern,
SamePattern_SameRowPerm};
static trans_t transs[] = {NOTRANS, TRANS, CONJ};
/* Some function prototypes */
extern int dgst01(int, int, SuperMatrix *, SuperMatrix *,
SuperMatrix *, int *, int *, double *);
extern int dgst02(trans_t, int, int, int, SuperMatrix *, double *,
int, double *, int, double *resid);
extern int dgst04(int, int, double *, int,
double *, int, double rcond, double *resid);
extern int dgst07(trans_t, int, int, SuperMatrix *, double *, int,
double *, int, double *, int,
double *, double *, double *);
extern int dlatb4_(char *, int *, int *, int *, char *, int *, int *,
double *, int *, double *, char *);
extern int dlatms_(int *, int *, char *, int *, char *, double *d,
int *, double *, double *, int *, int *,
char *, double *, int *, double *, int *);
extern int sp_dconvert(int, int, double *, int, int, int,
double *a, int *, int *, int *);
/* Executable statements */
strcpy(path, "DGE");
nrun = 0;
nfail = 0;
nerrs = 0;
/* Defaults */
lwork = 0;
n = 1;
nrhs = 1;
panel_size = sp_ienv(1);
relax = sp_ienv(2);
u = 1.0;
strcpy(matrix_type, "LA");
parse_command_line(argc, argv, matrix_type, &n,
&panel_size, &relax, &nrhs, &maxsuper,
&rowblk, &colblk, &lwork, &u);
if ( lwork > 0 ) {
work = SUPERLU_MALLOC(lwork);
if ( !work ) {
fprintf(stderr, "expert: cannot allocate %d bytes\n", lwork);
exit (-1);
}
}
/* Set the default input options. */
set_default_options(&options);
options.DiagPivotThresh = u;
options.PrintStat = NO;
options.PivotGrowth = YES;
options.ConditionNumber = YES;
options.IterRefine = SLU_DOUBLE;
if ( strcmp(matrix_type, "LA") == 0 ) {
/* Test LAPACK matrix suite. */
m = n;
lda = SUPERLU_MAX(n, 1);
nnz = n * n; /* upper bound */
fimat = 1;
nimat = NTYPES;
Afull = doubleCalloc(lda * n);
dallocateA(n, nnz, &a, &asub, &xa);
} else {
/* Read a sparse matrix */
fimat = nimat = 0;
dreadhb(&m, &n, &nnz, &a, &asub, &xa);
}
dallocateA(n, nnz, &a_save, &asub_save, &xa_save);
rhsb = doubleMalloc(m * nrhs);
bsav = doubleMalloc(m * nrhs);
solx = doubleMalloc(n * nrhs);
ldb = m;
ldx = n;
dCreate_Dense_Matrix(&B, m, nrhs, rhsb, ldb, SLU_DN, SLU_D, SLU_GE);
dCreate_Dense_Matrix(&X, n, nrhs, solx, ldx, SLU_DN, SLU_D, SLU_GE);
xact = doubleMalloc(n * nrhs);
etree = intMalloc(n);
perm_r = intMalloc(n);
perm_c = intMalloc(n);
pc_save = intMalloc(n);
R = (double *) SUPERLU_MALLOC(m*sizeof(double));
C = (double *) SUPERLU_MALLOC(n*sizeof(double));
ferr = (double *) SUPERLU_MALLOC(nrhs*sizeof(double));
berr = (double *) SUPERLU_MALLOC(nrhs*sizeof(double));
j = SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs);
rwork = (double *) SUPERLU_MALLOC(j*sizeof(double));
for (i = 0; i < j; ++i) rwork[i] = 0.;
if ( !R ) ABORT("SUPERLU_MALLOC fails for R");
if ( !C ) ABORT("SUPERLU_MALLOC fails for C");
if ( !ferr ) ABORT("SUPERLU_MALLOC fails for ferr");
if ( !berr ) ABORT("SUPERLU_MALLOC fails for berr");
if ( !rwork ) ABORT("SUPERLU_MALLOC fails for rwork");
wwork = doubleCalloc( SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs) );
for (i = 0; i < n; ++i) perm_c[i] = pc_save[i] = i;
options.ColPerm = MY_PERMC;
for (imat = fimat; imat <= nimat; ++imat) { /* All matrix types */
if ( imat ) {
/* Skip types 5, 6, or 7 if the matrix size is too small. */
zerot = (imat >= 5 && imat <= 7);
if ( zerot && n < imat-4 )
continue;
/* Set up parameters with DLATB4 and generate a test matrix
with DLATMS. */
dlatb4_(path, &imat, &n, &n, sym, &kl, &ku, &anorm, &mode,
&cndnum, dist);
dlatms_(&n, &n, dist, iseed, sym, &rwork[0], &mode, &cndnum,
&anorm, &kl, &ku, "No packing", Afull, &lda,
&wwork[0], &info);
if ( info ) {
printf(FMT3, "DLATMS", info, izero, n, nrhs, imat, nfail);
continue;
}
/* For types 5-7, zero one or more columns of the matrix
to test that INFO is returned correctly. */
if ( zerot ) {
if ( imat == 5 ) izero = 1;
else if ( imat == 6 ) izero = n;
else izero = n / 2 + 1;
ioff = (izero - 1) * lda;
if ( imat < 7 ) {
for (i = 0; i < n; ++i) Afull[ioff + i] = zero;
} else {
for (j = 0; j < n - izero + 1; ++j)
for (i = 0; i < n; ++i)
Afull[ioff + i + j*lda] = zero;
}
} else {
izero = 0;
}
/* Convert to sparse representation. */
sp_dconvert(n, n, Afull, lda, kl, ku, a, asub, xa, &nnz);
} else {
izero = 0;
zerot = 0;
}
dCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_D, SLU_GE);
/* Save a copy of matrix A in ASAV */
dCreate_CompCol_Matrix(&ASAV, m, n, nnz, a_save, asub_save, xa_save,
SLU_NC, SLU_D, SLU_GE);
dCopy_CompCol_Matrix(&A, &ASAV);
/* Form exact solution. */
dGenXtrue(n, nrhs, xact, ldx);
StatInit(&stat);
for (iequed = 0; iequed < 4; ++iequed) {
*equed = equeds[iequed];
if (iequed == 0) nfact = 4;
else nfact = 1; /* Only test factored, pre-equilibrated matrix */
for (ifact = 0; ifact < nfact; ++ifact) {
fact = facts[ifact];
options.Fact = fact;
for (equil = 0; equil < 2; ++equil) {
options.Equil = equil;
prefact = ( options.Fact == FACTORED ||
options.Fact == SamePattern_SameRowPerm );
/* Need a first factor */
nofact = (options.Fact != FACTORED); /* Not factored */
/* Restore the matrix A. */
dCopy_CompCol_Matrix(&ASAV, &A);
if ( zerot ) {
if ( prefact ) continue;
} else if ( options.Fact == FACTORED ) {
if ( equil || iequed ) {
/* Compute row and column scale factors to
equilibrate matrix A. */
dgsequ(&A, R, C, &rowcnd, &colcnd, &amax, &info);
/* Force equilibration. */
if ( !info && n > 0 ) {
if ( lsame_(equed, "R") ) {
rowcnd = 0.;
colcnd = 1.;
} else if ( lsame_(equed, "C") ) {
rowcnd = 1.;
colcnd = 0.;
} else if ( lsame_(equed, "B") ) {
rowcnd = 0.;
colcnd = 0.;
}
}
/* Equilibrate the matrix. */
dlaqgs(&A, R, C, rowcnd, colcnd, amax, equed);
}
}
if ( prefact ) { /* Need a factor for the first time */
/* Save Fact option. */
fact = options.Fact;
options.Fact = DOFACT;
/* Preorder the matrix, obtain the column etree. */
sp_preorder(&options, &A, perm_c, etree, &AC);
/* Factor the matrix AC. */
dgstrf(&options, &AC, relax, panel_size,
etree, work, lwork, perm_c, perm_r, &L, &U,
&stat, &info);
if ( info ) {
printf("** First factor: info %d, equed %c\n",
info, *equed);
if ( lwork == -1 ) {
printf("** Estimated memory: %d bytes\n",
info - n);
exit(0);
}
}
Destroy_CompCol_Permuted(&AC);
/* Restore Fact option. */
options.Fact = fact;
} /* if .. first time factor */
for (itran = 0; itran < NTRAN; ++itran) {
trans = transs[itran];
options.Trans = trans;
/* Restore the matrix A. */
dCopy_CompCol_Matrix(&ASAV, &A);
/* Set the right hand side. */
dFillRHS(trans, nrhs, xact, ldx, &A, &B);
dCopy_Dense_Matrix(m, nrhs, rhsb, ldb, bsav, ldb);
/*----------------
* Test dgssv
*----------------*/
if ( options.Fact == DOFACT && itran == 0) {
/* Not yet factored, and untransposed */
dCopy_Dense_Matrix(m, nrhs, rhsb, ldb, solx, ldx);
dgssv(&options, &A, perm_c, perm_r, &L, &U, &X,
&stat, &info);
if ( info && info != izero ) {
printf(FMT3, "dgssv",
info, izero, n, nrhs, imat, nfail);
} else {
/* Reconstruct matrix from factors and
compute residual. */
dgst01(m, n, &A, &L, &U, perm_c, perm_r,
&result[0]);
nt = 1;
if ( izero == 0 ) {
/* Compute residual of the computed
solution. */
dCopy_Dense_Matrix(m, nrhs, rhsb, ldb,
wwork, ldb);
dgst02(trans, m, n, nrhs, &A, solx,
ldx, wwork,ldb, &result[1]);
nt = 2;
}
/* Print information about the tests that
did not pass the threshold. */
for (i = 0; i < nt; ++i) {
if ( result[i] >= THRESH ) {
printf(FMT1, "dgssv", n, i,
result[i]);
++nfail;
}
}
nrun += nt;
} /* else .. info == 0 */
/* Restore perm_c. */
for (i = 0; i < n; ++i) perm_c[i] = pc_save[i];
if (lwork == 0) {
Destroy_SuperNode_Matrix(&L);
Destroy_CompCol_Matrix(&U);
}
} /* if .. end of testing dgssv */
/*----------------
* Test dgssvx
*----------------*/
/* Equilibrate the matrix if fact = FACTORED and
equed = 'R', 'C', or 'B'. */
if ( options.Fact == FACTORED &&
(equil || iequed) && n > 0 ) {
dlaqgs(&A, R, C, rowcnd, colcnd, amax, equed);
}
/* Solve the system and compute the condition number
and error bounds using dgssvx. */
dgssvx(&options, &A, perm_c, perm_r, etree,
equed, R, C, &L, &U, work, lwork, &B, &X, &rpg,
&rcond, ferr, berr, &mem_usage, &stat, &info);
if ( info && info != izero ) {
printf(FMT3, "dgssvx",
info, izero, n, nrhs, imat, nfail);
if ( lwork == -1 ) {
printf("** Estimated memory: %.0f bytes\n",
mem_usage.total_needed);
exit(0);
}
} else {
if ( !prefact ) {
/* Reconstruct matrix from factors and
compute residual. */
dgst01(m, n, &A, &L, &U, perm_c, perm_r,
&result[0]);
k1 = 0;
} else {
k1 = 1;
}
if ( !info ) {
/* Compute residual of the computed solution.*/
dCopy_Dense_Matrix(m, nrhs, bsav, ldb,
wwork, ldb);
dgst02(trans, m, n, nrhs, &ASAV, solx, ldx,
wwork, ldb, &result[1]);
/* Check solution from generated exact
solution. */
dgst04(n, nrhs, solx, ldx, xact, ldx, rcond,
&result[2]);
/* Check the error bounds from iterative
refinement. */
dgst07(trans, n, nrhs, &ASAV, bsav, ldb,
solx, ldx, xact, ldx, ferr, berr,
&result[3]);
/* Print information about the tests that did
not pass the threshold. */
for (i = k1; i < NTESTS; ++i) {
if ( result[i] >= THRESH ) {
printf(FMT2, "dgssvx",
options.Fact, trans, *equed,
n, imat, i, result[i]);
++nfail;
}
}
nrun += NTESTS;
} /* if .. info == 0 */
} /* else .. end of testing dgssvx */
} /* for itran ... */
if ( lwork == 0 ) {
Destroy_SuperNode_Matrix(&L);
Destroy_CompCol_Matrix(&U);
}
} /* for equil ... */
} /* for ifact ... */
} /* for iequed ... */
#if 0
if ( !info ) {
PrintPerf(&L, &U, &mem_usage, rpg, rcond, ferr, berr, equed);
}
#endif
} /* for imat ... */
/* Print a summary of the results. */
PrintSumm("DGE", nfail, nrun, nerrs);
SUPERLU_FREE (rhsb);
SUPERLU_FREE (bsav);
SUPERLU_FREE (solx);
SUPERLU_FREE (xact);
SUPERLU_FREE (etree);
SUPERLU_FREE (perm_r);
SUPERLU_FREE (perm_c);
SUPERLU_FREE (pc_save);
SUPERLU_FREE (R);
SUPERLU_FREE (C);
SUPERLU_FREE (ferr);
SUPERLU_FREE (berr);
SUPERLU_FREE (rwork);
SUPERLU_FREE (wwork);
Destroy_SuperMatrix_Store(&B);
Destroy_SuperMatrix_Store(&X);
Destroy_CompCol_Matrix(&A);
Destroy_CompCol_Matrix(&ASAV);
if ( lwork > 0 ) {
SUPERLU_FREE (work);
Destroy_SuperMatrix_Store(&L);
Destroy_SuperMatrix_Store(&U);
}
StatFree(&stat);
return 0;
}
/*
* Parse command line options to get relaxed snode size, panel size, etc.
*/
static void
parse_command_line(int argc, char *argv[], char *matrix_type,
int *n, int *w, int *relax, int *nrhs, int *maxsuper,
int *rowblk, int *colblk, int *lwork, double *u)
{
int c;
extern char *optarg;
while ( (c = getopt(argc, argv, "ht:n:w:r:s:m:b:c:l:")) != EOF ) {
switch (c) {
case 'h':
printf("Options:\n");
printf("\t-w <int> - panel size\n");
printf("\t-r <int> - granularity of relaxed supernodes\n");
exit(1);
break;
case 't': strcpy(matrix_type, optarg);
break;
case 'n': *n = atoi(optarg);
break;
case 'w': *w = atoi(optarg);
break;
case 'r': *relax = atoi(optarg);
break;
case 's': *nrhs = atoi(optarg);
break;
case 'm': *maxsuper = atoi(optarg);
break;
case 'b': *rowblk = atoi(optarg);
break;
case 'c': *colblk = atoi(optarg);
break;
case 'l': *lwork = atoi(optarg);
break;
case 'u': *u = atof(optarg);
break;
}
}
}
|