1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
/* ITSOL COPYRIGHT
Copyright (C) 2006, the University of Minnesota
ITSOL is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation [version 2 of the License, or any later version]
For details, see
http://www.gnu.org/licenses/gpl-2.0.txt
A copy of the GNU licencing agreement is attached to the ITSOL package
in the file GNU. For additional information contact the Free Software
Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
DISCLAIMER
----------
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
For information on ITSOL contact saad@cs.umn.edu
*/
/*! \file
* \brief Flexible GMRES from ITSOL developed by Yousef Saad.
*
* \ingroup Example
*/
#include "slu_ddefs.h"
#define epsmac 1.0e-16
extern double ddot_(int *, double [], int *, double [], int *);
extern double dnrm2_(int *, double [], int *);
/*!
* \brief Simple version of the ARMS preconditioned FGMRES algorithm.
*
* Y. S. Dec. 2000. -- Apr. 2008
*
* internal work arrays:
* vv = work array of length [im+1][n] (used to store the Arnoldi
* basis)
* hh = work array of length [im][im+1] (Householder matrix)
* z = work array of length [im][n] to store preconditioned vectors
*
* \param [in] n Dimension of vectors and matrices.
* \param [in] dmatvec Operation for matrix-vector multiplication.
* \param [in] dpsolve (right) preconditioning operation. Can be a NULL pointer (GMRES without preconditioner)
* \param [in] rhs Real vector of length n containing the right hand side.
* \param [in,out] sol In: Real vector of length n containing an initial guess to the solution on input.
* Out: Contains an approximate solution (upon successful return).
* \param [in] tol Tolerance for stopping iteration
* \param [in] im Krylov subspace dimension
* \param [in,out] itmax In: max number of iterations allowed.
* Out: number of steps required to converge.
* \param [in] fits If NULL, no output. If not NULL, file handle to output "resid vs time and its".
* \return Whether the algorithm finished successfully.
*/
int dfgmr(int n,
void (*dmatvec) (double, double[], double, double[]),
void (*dpsolve) (int, double[], double[]),
double *rhs, double *sol, double tol, int im, int *itmax, FILE * fits)
{
/*----------------------------------------------------------------------
| *** Preconditioned FGMRES ***
+-----------------------------------------------------------------------
| This is a simple version of the ARMS preconditioned FGMRES algorithm.
+-----------------------------------------------------------------------
| Y. S. Dec. 2000. -- Apr. 2008
+-----------------------------------------------------------------------
| on entry:
|----------
|
| rhs = real vector of length n containing the right hand side.
| sol = real vector of length n containing an initial guess to the
| solution on input.
| tol = tolerance for stopping iteration
| im = Krylov subspace dimension
| (itmax) = max number of iterations allowed.
| fits = NULL: no output
| != NULL: file handle to output " resid vs time and its"
|
| on return:
|----------
| fgmr int = 0 --> successful return.
| int = 1 --> convergence not achieved in itmax iterations.
| sol = contains an approximate solution (upon successful return).
| itmax = has changed. It now contains the number of steps required
| to converge --
+-----------------------------------------------------------------------
| internal work arrays:
|----------
| vv = work array of length [im+1][n] (used to store the Arnoldi
| basis)
| hh = work array of length [im][im+1] (Householder matrix)
| z = work array of length [im][n] to store preconditioned vectors
+-----------------------------------------------------------------------
| subroutines called :
| matvec - matrix-vector multiplication operation
| psolve - (right) preconditioning operation
| psolve can be a NULL pointer (GMRES without preconditioner)
+---------------------------------------------------------------------*/
int maxits = *itmax;
int its, i_1 = 1, i_2 = 2;
double eps1 = 0.0;
double **hh, *c, *s, *rs;
double **vv, **z;
double zero = 0.0;
double one = 1.0;
its = 0;
vv = (double **)SUPERLU_MALLOC((im + 1) * sizeof(double *));
for (int i = 0; i <= im; i++) vv[i] = doubleMalloc(n);
z = (double **)SUPERLU_MALLOC(im * sizeof(double *));
hh = (double **)SUPERLU_MALLOC(im * sizeof(double *));
for (int i = 0; i < im; i++)
{
hh[i] = doubleMalloc(i + 2);
z[i] = doubleMalloc(n);
}
c = doubleMalloc(im);
s = doubleMalloc(im);
rs = doubleMalloc(im + 1);
/*---- outer loop starts here ----*/
do
{
/*---- compute initial residual vector ----*/
dmatvec(one, sol, zero, vv[0]);
for (int j = 0; j < n; j++)
vv[0][j] = rhs[j] - vv[0][j]; /* vv[0]= initial residual */
double beta = dnrm2_(&n, vv[0], &i_1);
/*---- print info if fits != null ----*/
if (fits != NULL && its == 0)
fprintf(fits, "%8d %10.2e\n", its, beta);
/*if ( beta <= tol * dnrm2_(&n, rhs, &i_1) )*/
if ( !(beta > tol * dnrm2_(&n, rhs, &i_1)) )
break;
double t = 1.0 / beta;
/*---- normalize: vv[0] = vv[0] / beta ----*/
for (int j = 0; j < n; j++)
vv[0][j] = vv[0][j] * t;
if (its == 0)
eps1 = tol * beta;
/*---- initialize 1-st term of rhs of hessenberg system ----*/
rs[0] = beta;
int i = 0;
for (i = 0; i < im; i++)
{
its++;
int i1 = i + 1;
/*------------------------------------------------------------
| (Right) Preconditioning Operation z_{j} = M^{-1} v_{j}
+-----------------------------------------------------------*/
if (dpsolve)
dpsolve(n, z[i], vv[i]);
else
dcopy_(&n, vv[i], &i_1, z[i], &i_1);
/*---- matvec operation w = A z_{j} = A M^{-1} v_{j} ----*/
dmatvec(one, z[i], zero, vv[i1]);
/*------------------------------------------------------------
| modified gram - schmidt...
| h_{i,j} = (w,v_{i})
| w = w - h_{i,j} v_{i}
+------------------------------------------------------------*/
double t0 = dnrm2_(&n, vv[i1], &i_1);
for (int j = 0; j <= i; j++)
{
double negt;
double tt = ddot_(&n, vv[j], &i_1, vv[i1], &i_1);
hh[i][j] = tt;
negt = -tt;
daxpy_(&n, &negt, vv[j], &i_1, vv[i1], &i_1);
}
/*---- h_{j+1,j} = ||w||_{2} ----*/
t = dnrm2_(&n, vv[i1], &i_1);
while (t < 0.5 * t0)
{
t0 = t;
for (int j = 0; j <= i; j++)
{
double negt;
double tt = ddot_(&n, vv[j], &i_1, vv[i1], &i_1);
hh[i][j] += tt;
negt = -tt;
daxpy_(&n, &negt, vv[j], &i_1, vv[i1], &i_1);
}
t = dnrm2_(&n, vv[i1], &i_1);
}
hh[i][i1] = t;
if (t != 0.0)
{
/*---- v_{j+1} = w / h_{j+1,j} ----*/
t = 1.0 / t;
for (int k = 0; k < n; k++)
vv[i1][k] = vv[i1][k] * t;
}
/*---------------------------------------------------
| done with modified gram schmidt and arnoldi step
| now update factorization of hh
+--------------------------------------------------*/
/*--------------------------------------------------------
| perform previous transformations on i-th column of h
+-------------------------------------------------------*/
for (int k = 1; k <= i; k++)
{
int k1 = k - 1;
double tt = hh[i][k1];
hh[i][k1] = c[k1] * tt + s[k1] * hh[i][k];
hh[i][k] = -s[k1] * tt + c[k1] * hh[i][k];
}
double gam = sqrt(pow(hh[i][i], 2) + pow(hh[i][i1], 2));
/*---------------------------------------------------
| if gamma is zero then any small value will do
| affect only residual estimate
+--------------------------------------------------*/
/* if (gam == 0.0) gam = epsmac; */
/*---- get next plane rotation ---*/
if (gam == 0.0)
{
c[i] = one;
s[i] = zero;
}
else
{
c[i] = hh[i][i] / gam;
s[i] = hh[i][i1] / gam;
}
rs[i1] = -s[i] * rs[i];
rs[i] = c[i] * rs[i];
/*----------------------------------------------------
| determine residual norm and test for convergence
+---------------------------------------------------*/
hh[i][i] = c[i] * hh[i][i] + s[i] * hh[i][i1];
beta = fabs(rs[i1]);
if (fits != NULL)
fprintf(fits, "%8d %10.2e\n", its, beta);
if (beta <= eps1 || its >= maxits)
break;
}
if (i == im) i--;
/*---- now compute solution. 1st, solve upper triangular system ----*/
rs[i] = rs[i] / hh[i][i];
for (int ii = 1; ii <= i; ii++)
{
int k = i - ii;
double tt = rs[k];
for (int j = k + 1; j <= i; j++)
tt = tt - hh[j][k] * rs[j];
rs[k] = tt / hh[k][k];
}
/*---- linear combination of v[i]'s to get sol. ----*/
for (int j = 0; j <= i; j++)
{
double tt = rs[j];
for (int k = 0; k < n; k++)
sol[k] += tt * z[j][k];
}
/* calculate the residual and output */
dmatvec(one, sol, zero, vv[0]);
for (int j = 0; j < n; j++)
vv[0][j] = rhs[j] - vv[0][j]; /* vv[0]= initial residual */
/*---- print info if fits != null ----*/
beta = dnrm2_(&n, vv[0], &i_1);
/*---- restart outer loop if needed ----*/
/*if (beta >= eps1 / tol)*/
if ( !(beta < eps1 / tol) )
{
its = maxits + 10;
break;
}
if (beta <= eps1)
break;
} while(its < maxits);
int retval = (its >= maxits);
for (int i = 0; i <= im; i++)
SUPERLU_FREE(vv[i]);
SUPERLU_FREE(vv);
for (int i = 0; i < im; i++)
{
SUPERLU_FREE(hh[i]);
SUPERLU_FREE(z[i]);
}
SUPERLU_FREE(hh);
SUPERLU_FREE(z);
SUPERLU_FREE(c);
SUPERLU_FREE(s);
SUPERLU_FREE(rs);
*itmax = its;
return retval;
} /*----end of fgmr ----*/
|