1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
/*
Copyright (c) 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy)
All rights reserved.
The source code is distributed under BSD license, see the file License.txt
at the top-level directory.
*/
/*
* -- SuperLU routine (version 5.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
* Last update: July 10, 2015
*
*/
/*! \file
* \brief DGSSVX to solve systems with the same matrix but different right-hand side.
*
* \ingroup Example
*/
#include <getopt.h>
#include "slu_ddefs.h"
void parse_command_line(int argc, char *argv[], int_t *lwork,
double *u, yes_no_t *equil, trans_t *trans);
int main(int argc, char *argv[])
{
/*!
* \brief The driver program DLINSOLX1.
*
* This example illustrates how to use DGSSVX to solve systems with the same
* A but different right-hand side.
* In this case, we factorize A only once in the first call to DGSSVX,
* and reuse the following data structures in the subsequent call to DGSSVX:
* perm_c, perm_r, R, C, L, U.
*
*/
char equed[1];
yes_no_t equil;
trans_t trans;
SuperMatrix A, L, U;
SuperMatrix B, X;
NCformat *Astore;
NCformat *Ustore;
SCformat *Lstore;
GlobalLU_t Glu; /* facilitate multiple factorizations with
SamePattern_SameRowPerm */
double *a;
int_t *asub, *xa;
int *perm_c; /* column permutation vector */
int *perm_r; /* row permutations from partial pivoting */
int *etree;
void *work = NULL;
int m, n, nrhs, ldx;
int_t info, lwork, nnz;
double *rhsb, *rhsx, *xact;
double *R, *C;
double *ferr, *berr;
double u, rpg, rcond;
mem_usage_t mem_usage;
superlu_options_t options;
SuperLUStat_t stat;
FILE *fp = stdin;
#if ( DEBUGlevel>=1 )
CHECK_MALLOC("Enter main()");
#endif
/* Defaults */
lwork = 0;
nrhs = 1;
equil = YES;
u = 1.0;
trans = NOTRANS;
/* Set the default values for options argument:
options.Fact = DOFACT;
options.Equil = YES;
options.ColPerm = COLAMD;
options.DiagPivotThresh = 1.0;
options.Trans = NOTRANS;
options.IterRefine = NOREFINE;
options.SymmetricMode = NO;
options.PivotGrowth = NO;
options.ConditionNumber = NO;
options.PrintStat = YES;
*/
set_default_options(&options);
/* Can use command line input to modify the defaults. */
parse_command_line(argc, argv, &lwork, &u, &equil, &trans);
options.Equil = equil;
options.DiagPivotThresh = u;
options.Trans = trans;
if ( lwork > 0 ) {
work = SUPERLU_MALLOC(lwork);
if ( !work ) {
ABORT("DLINSOLX: cannot allocate work[]");
}
}
/* Read matrix A from a file in Harwell-Boeing format.*/
dreadhb(fp, &m, &n, &nnz, &a, &asub, &xa);
dCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_D, SLU_GE);
Astore = A.Store;
printf("Dimension %dx%d; # nonzeros %d\n", (int)A.nrow, (int)A.ncol, (int)Astore->nnz);
if ( !(rhsb = doubleMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[].");
if ( !(rhsx = doubleMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[].");
dCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_D, SLU_GE);
dCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_D, SLU_GE);
xact = doubleMalloc(n * nrhs);
ldx = n;
dGenXtrue(n, nrhs, xact, ldx);
dFillRHS(trans, nrhs, xact, ldx, &A, &B);
if ( !(etree = int32Malloc(n)) ) ABORT("Malloc fails for etree[].");
if ( !(perm_r = int32Malloc(m)) ) ABORT("Malloc fails for perm_r[].");
if ( !(perm_c = int32Malloc(n)) ) ABORT("Malloc fails for perm_c[].");
if ( !(R = (double *) SUPERLU_MALLOC(A.nrow * sizeof(double))) )
ABORT("SUPERLU_MALLOC fails for R[].");
if ( !(C = (double *) SUPERLU_MALLOC(A.ncol * sizeof(double))) )
ABORT("SUPERLU_MALLOC fails for C[].");
if ( !(ferr = (double *) SUPERLU_MALLOC(nrhs * sizeof(double))) )
ABORT("SUPERLU_MALLOC fails for ferr[].");
if ( !(berr = (double *) SUPERLU_MALLOC(nrhs * sizeof(double))) )
ABORT("SUPERLU_MALLOC fails for berr[].");
/* Initialize the statistics variables. */
StatInit(&stat);
/* ONLY PERFORM THE LU DECOMPOSITION */
B.ncol = 0; /* Indicate not to solve the system */
dgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C,
&L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr,
&Glu, &mem_usage, &stat, &info);
printf("LU factorization: dgssvx() returns info %lld\n", (long long)info);
if ( info == 0 || info == n+1 ) {
if ( options.PivotGrowth ) printf("Recip. pivot growth = %e\n", rpg);
if ( options.ConditionNumber )
printf("Recip. condition number = %e\n", rcond);
Lstore = (SCformat *) L.Store;
Ustore = (NCformat *) U.Store;
printf("No of nonzeros in factor L = %lld\n", (long long) Lstore->nnz);
printf("No of nonzeros in factor U = %lld\n", (long long) Ustore->nnz);
printf("No of nonzeros in L+U = %lld\n", (long long) Lstore->nnz + Ustore->nnz - n);
printf("FILL ratio = %.1f\n", (float)(Lstore->nnz + Ustore->nnz - n)/nnz);
printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
fflush(stdout);
} else if ( info > 0 && lwork == -1 ) {
printf("** Estimated memory: %lld bytes\n", (long long)info - n);
}
if ( options.PrintStat ) StatPrint(&stat);
StatFree(&stat);
/* ------------------------------------------------------------
NOW WE SOLVE THE LINEAR SYSTEM USING THE FACTORED FORM OF A.
------------------------------------------------------------*/
options.Fact = FACTORED; /* Indicate the factored form of A is supplied. */
B.ncol = nrhs; /* Set the number of right-hand side */
/* Initialize the statistics variables. */
StatInit(&stat);
dgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C,
&L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr,
&Glu, &mem_usage, &stat, &info);
printf("Triangular solve: dgssvx() returns info %lld\n", (long long)info);
if ( info == 0 || info == n+1 ) {
/* This is how you could access the solution matrix. */
double *sol = (double*) ((DNformat*) X.Store)->nzval;
(void)sol; // suppress unused variable warning
if ( options.IterRefine ) {
printf("Iterative Refinement:\n");
printf("%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR");
for (int i = 0; i < nrhs; ++i)
printf("%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]);
}
fflush(stdout);
} else if ( info > 0 && lwork == -1 ) {
printf("** Estimated memory: %lld bytes\n", (long long)info - n);
}
if ( options.PrintStat ) StatPrint(&stat);
StatFree(&stat);
SUPERLU_FREE (rhsb);
SUPERLU_FREE (rhsx);
SUPERLU_FREE (xact);
SUPERLU_FREE (etree);
SUPERLU_FREE (perm_r);
SUPERLU_FREE (perm_c);
SUPERLU_FREE (R);
SUPERLU_FREE (C);
SUPERLU_FREE (ferr);
SUPERLU_FREE (berr);
Destroy_CompCol_Matrix(&A);
Destroy_SuperMatrix_Store(&B);
Destroy_SuperMatrix_Store(&X);
if ( lwork == 0 ) {
Destroy_SuperNode_Matrix(&L);
Destroy_CompCol_Matrix(&U);
} else if ( lwork > 0 ) {
SUPERLU_FREE(work);
}
#if ( DEBUGlevel>=1 )
CHECK_MALLOC("Exit main()");
#endif
return EXIT_SUCCESS;
}
/*!
* \brief Parse command line options to get relaxed snode size, panel size, etc.
*/
void
parse_command_line(int argc, char *argv[], int_t *lwork,
double *u, yes_no_t *equil, trans_t *trans )
{
int c;
extern char *optarg;
while ( (c = getopt(argc, argv, "hl:u:e:t:")) != EOF ) {
switch (c) {
case 'h':
printf("Options:\n");
printf("\t-l <int> - length of work[*] array\n");
printf("\t-u <int> - pivoting threshold\n");
printf("\t-e <0 or 1> - equilibrate or not\n");
printf("\t-t <0 or 1> - solve transposed system or not\n");
exit(1);
break;
case 'l': *lwork = atoi(optarg);
break;
case 'u': *u = atof(optarg);
break;
case 'e': *equil = atoi(optarg);
break;
case 't': *trans = atoi(optarg);
break;
}
}
}
|