File: example-orbital.c

package info (click to toggle)
supernovas 1.5.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,496 kB
  • sloc: ansic: 20,238; makefile: 387; fortran: 38; python: 34; sh: 14
file content (191 lines) | stat: -rw-r--r-- 7,647 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
/**
 * @file
 *
 * @date Created  on Jan 9, 2025
 * @author Attila Kovacs
 *
 *  Example file for using the SuperNOVAS C/C++ library for determining positions for
 *  Solar-system objects define through a set of orbital parameters.
 *
 *  For example, the IAU Minor Planet Center (MPC) publishes current orbital
 *  parameters for known asteroids, comets, and near-Earth objects. While orbitals are
 *  not super precise in general, they can provide sufficienly accurate positions on
 *  the arcsecond level (or below), and may be the best/only source of position data
 *  for newly discovered objects.
 *
 *  See https://minorplanetcenter.net/data
 *
 *  Link with
 *
 *  ```
 *   -lsupernovas
 *  ```
 */

#define _POSIX_C_SOURCE 199309L   ///< for clock_gettime()

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#include <novas.h>      ///< SuperNOVAS functions and definitions


// Below are some Earth orientation values. Here we define them as constants, but they may
// of course be variables. They should be set to the appropriate values for the time
// of observation based on the IERS Bulletins...

#define  LEAP_SECONDS     37        ///< [s] current leap seconds from IERS Bulletin C
#define  DUT1             0.114     ///< [s] current UT1 - UTC time difference from IERS Bulletin A
#define  POLAR_DX         230.0     ///< [mas] Earth polar offset x, e.g. from IERS Bulletin A.
#define  POLAR_DY         -62.0     ///< [mas] Earth polar offset y, e.g. from IERS Bulletin A.

int main() {
  // SuperNOVAS variables used for the calculations ------------------------->
  novas_orbital orbit = NOVAS_ORBIT_INIT;     // Orbital parameters
  object source;                    // a celestial object: sidereal, planet, ephemeris or orbital source
  observer obs;                     // observer location
  novas_timespec obs_time;          // astrometric time of observation
  novas_frame obs_frame;            // observing frame defined for observing time and location
  enum novas_accuracy accuracy;     // NOVAS_FULL_ACCURACY or NOVAS_REDUCED_ACCURACY
  sky_pos apparent;                 // calculated precise observed (apparent) position of source

  // Calculated quantities ------------------------------------------------->
  double az, el;                    // calculated azimuth and elevation at observing site

  // We'll print debugging messages and error traces...
  novas_debug(NOVAS_DEBUG_ON);


  // Orbitals assume Keplerian motion, and are never going to be accurate much below the
  // tens of arcsec level even for the most current MPC orbits. Orbitals for planetary
  // satellites are even less precise. So, with orbitals, there is no point on pressing
  // for ultra-high (sub-uas level) accuracy...
  accuracy = NOVAS_REDUCED_ACCURACY;      // mas-level precision, typically


  // -------------------------------------------------------------------------
  // Define a sidereal source

  // Orbital Parameters for the asteroid Ceres from the Minor Planet Center
  // (MPC) at JD 2460600.5
  orbit.jd_tdb = 2460600.5;   // [day] TDB date
  orbit.a = 2.7666197;        // [AU]
  orbit.e = 0.079184;
  orbit.i = 10.5879;          // [deg]
  orbit.omega = 73.28579;     // [deg]
  orbit.Omega = 80.25414;     // [deg]
  orbit.M0 = 145.84905;       // [deg]
  orbit.n = 0.21418047;       // [deg/day]

  // Define Ceres as the observed object (we can use whatever ID numbering
  // system here, since it's irrelevant to SuperNOVAS in this context).
  make_orbital_object("Ceres", 2000001, &orbit, &source);


  // ... Or, you could define orbitals for a satellite instead:
  /*
  // E.g. Callisto's orbital parameters from JPL Horizons
  // https://ssd.jpl.nasa.gov/sats/elem/sep.html
  // 1882700. 0.007 43.8  87.4  0.3 309.1 16.690440 277.921 577.264 268.7 64.8
  orbit.system.center = NOVAS_JUPITER;
  novas_set_orbsys_pole(NOVAS_GCRS, 268.7 / 15.0, 64.8, &orbit->system);

  orbit.jd_tdb = NOVAS_JD_J2000;
  orbit.a = 1882700.0 * 1e3 / AU;
  orbit.e = 0.007;
  orbit.omega = 43.8;
  orbit.M0 = 87.4;
  orbit.i = 0.3;
  orbit.Omega = 309.1;
  orbit.n = TWOPI / 16.690440;
  orbit.apsis_period = 277.921 * 365.25;
  orbit.node_period = 577.264 * 365.25;

  // Set Callisto as the observed object
  make_orbital_object("Callisto", 501, &orbit, &source);
  */


  // -------------------------------------------------------------------------
  // Define observer somewhere on Earth (we can also define observers in Earth
  // or Sun orbit, at the geocenter or at the Solary-system barycenter...)

  // Specify the location we are observing from
  // 50.7374 deg N, 7.0982 deg E, 60m elevation (GPS / WGS84)
  // (You can set local weather parameters after...)
  if(make_gps_observer(50.7374, 7.0982, 60.0, &obs) != 0) {
    fprintf(stderr, "ERROR! defining Earth-based observer location.\n");
    return 1;
  }


  // -------------------------------------------------------------------------
  // Set the astrometric time of observation...

  // Set the time of observation to the current UTC-based UNIX time
  // (We can set astromtric time using an other time measure also...)
  if(novas_set_current_time(LEAP_SECONDS, DUT1, &obs_time) != 0) {
    fprintf(stderr, "ERROR! failed to set time of observation.\n");
    return 1;
  }

  // ... Or you could set a time explicily in any known timescale.
  /*
  // Let's set a TDB-based time for the start of the J2000 epoch exactly...
  if(novas_set_time(NOVAS_TDB, NOVAS_JD_J2000, 32, 0.0, &obs_time) != 0) {
    fprintf(stderr, "ERROR! failed to set time of observation.\n");
    return 1;
  }
  */


  // -------------------------------------------------------------------------
  // You might want to set a provider for precise planet positions so we might
  // calculate Earth, Sun and major planet positions accurately. It is needed
  // if you have orbitals defined around a major planet.
  //
  // There are many ways to set a provider of planet positions. For example,
  // you may use the CALCEPH library:
  //
  // t_calcephbin *planets = calceph_open("path/to/de440s.bsp");
  // novas_use_calceph(planets);


  // -------------------------------------------------------------------------
  // Initialize the observing frame with the given observing and Earth
  // orientation patameters.
  //
  if(novas_make_frame(accuracy, &obs, &obs_time, POLAR_DX, POLAR_DY, &obs_frame) != 0) {
    fprintf(stderr, "ERROR! failed to define observing frame.\n");
    return 1;
  }


  // -------------------------------------------------------------------------
  // Calculate the precise apparent position (e.g. in CIRS).
  if(novas_sky_pos(&source, &obs_frame, NOVAS_CIRS, &apparent) != 0) {
    fprintf(stderr, "ERROR! failed to calculate apparent position.\n");
    return 1;
  }

  // Let's print the apparent position
  // (Note, CIRS R.A. is relative to CIO, not the true equinox of date.)
  printf(" RA = %.9f h, Dec = %.9f deg, rad_vel = %.6f km/s\n", apparent.ra, apparent.dec, apparent.rv);


  // -------------------------------------------------------------------------
  // Convert the apparent position in CIRS on sky to horizontal coordinates
  // We'll use a standard (fixed) atmospheric model to estimate an optical refraction
  // (You might use other refraction models, or NULL to ignore refraction corrections)
  if(novas_app_to_hor(&obs_frame, NOVAS_CIRS, apparent.ra, apparent.dec, novas_standard_refraction, &az, &el) != 0) {
    fprintf(stderr, "ERROR! failed to calculate azimuth / elevation.\n");
    return 1;
  }

  // Let's print the calculated azimuth and elevation
  printf(" Az = %.6f deg, El = %.6f deg\n", az, el);

  return 0;
}