File: ge_vulkan_driver.hpp

package info (click to toggle)
supertuxkart 1.4%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 768,424 kB
  • sloc: cpp: 412,077; xml: 106,334; ansic: 83,792; asm: 1,558; python: 1,403; sh: 1,366; objc: 452; makefile: 333; javascript: 23; awk: 20
file content (542 lines) | stat: -rw-r--r-- 25,137 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
#ifndef __VULKAN_DRIVER_INCLUDED__
#define __VULKAN_DRIVER_INCLUDED__

#include "IrrCompileConfig.h"

#ifdef _IRR_COMPILE_WITH_VULKAN_

#include "vulkan_wrapper.h"
#include "ge_vma.hpp"
#include "SDL_video.h"

#include "../source/Irrlicht/CNullDriver.h"
#include "SIrrCreationParameters.h"
#include "SColor.h"
#include <array>
#include <memory>
#include <mutex>
#include <string>
#include <vector>

using namespace irr;
using namespace video;

namespace GE
{
    class GESPM;
    class GEVulkanDepthTexture;
    class GEVulkanDrawCall;
    class GEVulkanFBOTexture;
    class GEVulkanMeshCache;
    class GEVulkanTextureDescriptor;
    enum GEVulkanSampler : unsigned
    {
        GVS_MIN = 0,
        GVS_NEAREST = GVS_MIN,
        GVS_SKYBOX,
        GVS_3D_MESH_MIPMAP_2,
        GVS_3D_MESH_MIPMAP_4,
        GVS_3D_MESH_MIPMAP_16,
        GVS_2D_RENDER,
        GVS_COUNT,
    };
    class GEVulkanDriver : public video::CNullDriver
    {
    public:

        //! constructor
        GEVulkanDriver(const SIrrlichtCreationParameters& params, io::IFileSystem* io, SDL_Window* window,
                       IrrlichtDevice* device);

        //! destructor
        virtual ~GEVulkanDriver();

        //! applications must call this method before performing any rendering. returns false if failed.
        virtual bool beginScene(bool backBuffer=true, bool zBuffer=true,
                SColor color=SColor(255,0,0,0),
                const SExposedVideoData& videoData=SExposedVideoData(),
                core::rect<s32>* sourceRect=0);

        //! applications must call this method after performing any rendering. returns false if failed.
        virtual bool endScene();

        //! queries the features of the driver, returns true if feature is available
        virtual bool queryFeature(E_VIDEO_DRIVER_FEATURE feature) const  { return true; }

        //! sets transformation
        virtual void setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat) {}

        //! sets a material
        virtual void setMaterial(const SMaterial& material) { Material = material; }

        //! sets a render target
        virtual bool setRenderTarget(video::ITexture* texture,
            bool clearBackBuffer=true, bool clearZBuffer=true,
            SColor color=video::SColor(0,0,0,0));

        //! Sets multiple render targets
        virtual bool setRenderTarget(const core::array<video::IRenderTarget>& texture,
            bool clearBackBuffer=true, bool clearZBuffer=true,
            SColor color=video::SColor(0,0,0,0)) { return true; }

        //! sets a viewport
        virtual void setViewPort(const core::rect<s32>& area);

        //! gets the area of the current viewport
        virtual const core::rect<s32>& getViewPort() const { return m_viewport; }

        //! updates hardware buffer if needed
        virtual bool updateHardwareBuffer(SHWBufferLink *HWBuffer) { return false; }

        //! Create hardware buffer from mesh
        virtual SHWBufferLink *createHardwareBuffer(const scene::IMeshBuffer* mb) { return NULL; }

        //! Delete hardware buffer (only some drivers can)
        virtual void deleteHardwareBuffer(SHWBufferLink *HWBuffer) {}

        //! Draw hardware buffer
        virtual void drawHardwareBuffer(SHWBufferLink *HWBuffer) {}

        //! Create occlusion query.
        /** Use node for identification and mesh for occlusion test. */
        virtual void addOcclusionQuery(scene::ISceneNode* node,
                const scene::IMesh* mesh=0) {}

        //! Remove occlusion query.
        virtual void removeOcclusionQuery(scene::ISceneNode* node) {}

        //! Run occlusion query. Draws mesh stored in query.
        /** If the mesh shall not be rendered visible, use
        overrideMaterial to disable the color and depth buffer. */
        virtual void runOcclusionQuery(scene::ISceneNode* node, bool visible=false) {}

        //! Update occlusion query. Retrieves results from GPU.
        /** If the query shall not block, set the flag to false.
        Update might not occur in this case, though */
        virtual void updateOcclusionQuery(scene::ISceneNode* node, bool block=true) {}

        //! Return query result.
        /** Return value is the number of visible pixels/fragments.
        The value is a safe approximation, i.e. can be larger then the
        actual value of pixels. */
        virtual u32 getOcclusionQueryResult(scene::ISceneNode* node) const { return 0; }

        //! draws a vertex primitive list
        virtual void drawVertexPrimitiveList(const void* vertices, u32 vertexCount,
                const void* indexList, u32 primitiveCount,
                E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType,
                E_INDEX_TYPE iType) {}

        //! draws a vertex primitive list in 2d
        virtual void draw2DVertexPrimitiveList(const void* vertices, u32 vertexCount,
                const void* indexList, u32 primitiveCount,
                E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType,
                E_INDEX_TYPE iType);

        //! draws an 2d image, using a color (if color is other then Color(255,255,255,255)) and the alpha channel of the texture if wanted.
        virtual void draw2DImage(const video::ITexture* texture, const core::position2d<s32>& destPos,
            const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect = 0,
            SColor color=SColor(255,255,255,255), bool useAlphaChannelOfTexture=false);

        //! Draws a part of the texture into the rectangle.
        virtual void draw2DImage(const video::ITexture* texture, const core::rect<s32>& destRect,
            const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect = 0,
            const video::SColor* const colors=0, bool useAlphaChannelOfTexture=false);

        //! Draws a set of 2d images, using a color and the alpha channel of the texture.
        virtual void draw2DImageBatch(const video::ITexture* texture,
                const core::array<core::position2d<s32> >& positions,
                const core::array<core::rect<s32> >& sourceRects,
                const core::rect<s32>* clipRect=0,
                SColor color=SColor(255,255,255,255),
                bool useAlphaChannelOfTexture=false);

        //!Draws an 2d rectangle with a gradient.
        virtual void draw2DRectangle(const core::rect<s32>& pos,
            SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown,
            const core::rect<s32>* clip)
        {
            SColor color[4] = { colorLeftUp, colorLeftDown, colorRightDown, colorRightUp };
            draw2DImage(m_white_texture, pos, core::recti(0, 0, 2, 2), clip, color, true);
        }

        //! Draws a 2d line.
        virtual void draw2DLine(const core::position2d<s32>& start,
                    const core::position2d<s32>& end,
                    SColor color=SColor(255,255,255,255)) {}

        //! Draws a pixel.
        virtual void drawPixel(u32 x, u32 y, const SColor & color) {}

        //! Draws a 3d line.
        virtual void draw3DLine(const core::vector3df& start,
            const core::vector3df& end, SColor color = SColor(255,255,255,255)) {}

        //! \return Returns the name of the video driver. Example: In case of the DIRECT3D8
        //! driver, it would return "Direct3D8.1".
        virtual const wchar_t* getName() const { return L""; }

        //! deletes all dynamic lights there are
        virtual void deleteAllDynamicLights() {}

        //! adds a dynamic light, returning an index to the light
        //! \param light: the light data to use to create the light
        //! \return An index to the light, or -1 if an error occurs
        virtual s32 addDynamicLight(const SLight& light) { return -1; }

        //! Turns a dynamic light on or off
        //! \param lightIndex: the index returned by addDynamicLight
        //! \param turnOn: true to turn the light on, false to turn it off
        virtual void turnLightOn(s32 lightIndex, bool turnOn) {}

        //! returns the maximal amount of dynamic lights the device can handle
        virtual u32 getMaximalDynamicLightAmount() const { return (u32)-1; }

        //! Sets the dynamic ambient light color. The default color is
        //! (0,0,0,0) which means it is dark.
        //! \param color: New color of the ambient light.
        virtual void setAmbientLight(const SColorf& color) {}

        //! Draws a shadow volume into the stencil buffer.
        virtual void drawStencilShadowVolume(const core::array<core::vector3df>& triangles, bool zfail=true, u32 debugDataVisible=0) {}

        //! Fills the stencil shadow with color.
        virtual void drawStencilShadow(bool clearStencilBuffer=false,
            video::SColor leftUpEdge = video::SColor(0,0,0,0),
            video::SColor rightUpEdge = video::SColor(0,0,0,0),
            video::SColor leftDownEdge = video::SColor(0,0,0,0),
            video::SColor rightDownEdge = video::SColor(0,0,0,0)) {}

        //! Returns the maximum amount of primitives (mostly vertices) which
        //! the device is able to render with one drawIndexedTriangleList
        //! call.
        virtual u32 getMaximalPrimitiveCount() const { return (u32)-1; }

        //! Enables or disables a texture creation flag.
        virtual void setTextureCreationFlag(E_TEXTURE_CREATION_FLAG flag, bool enabled) {}

        //! Sets the fog mode.
        virtual void setFog(SColor color, E_FOG_TYPE fogType, f32 start,
            f32 end, f32 density, bool pixelFog, bool rangeFog) {}

        //! Only used by the internal engine. Used to notify the driver that
        //! the window was resized.
        virtual void OnResize(const core::dimension2d<u32>& size);

        //! Returns type of video driver
        virtual E_DRIVER_TYPE getDriverType() const { return video::EDT_VULKAN; }

        //! Returns the transformation set by setTransform
        virtual const core::matrix4& getTransform(E_TRANSFORMATION_STATE state) const
        {
            static core::matrix4 unused;
            return unused;
        }

        //! Creates a render target texture.
        virtual ITexture* addRenderTargetTexture(const core::dimension2d<u32>& size,
                const io::path& name, const ECOLOR_FORMAT format = ECF_UNKNOWN, const bool useStencil = false);

        //! Clears the ZBuffer.
        virtual void clearZBuffer() {}

        //! Returns an image created from the last rendered frame.
        virtual IImage* createScreenShot(video::ECOLOR_FORMAT format=video::ECF_UNKNOWN, video::E_RENDER_TARGET target=video::ERT_FRAME_BUFFER) { return NULL; }

        //! Set/unset a clipping plane.
        virtual bool setClipPlane(u32 index, const core::plane3df& plane, bool enable=false) { return true; }

        //! Enable/disable a clipping plane.
        virtual void enableClipPlane(u32 index, bool enable) {}

        //! Returns the graphics card vendor name.
        virtual core::stringc getVendorInfo()
        {
            switch (m_properties.vendorID)
            {
                case 0x1002: return "AMD";
                case 0x1010: return "ImgTec";
                case 0x106B: return "Apple";
                case 0x10DE: return "NVIDIA";
                case 0x13B5: return "ARM";
                case 0x14e4: return "Broadcom";
                case 0x5143: return "Qualcomm";
                case 0x8086: return "INTEL";
                // llvmpipe
                case 0x10005: return "Mesa";
                default: return "Unknown";
            }
        }

        //! Enable the 2d override material
        virtual void enableMaterial2D(bool enable=true) {}

        //! Check if the driver was recently reset.
        virtual bool checkDriverReset() { return false; }

        //! Get the current color format of the color buffer
        /** \return Color format of the color buffer. */
        virtual ECOLOR_FORMAT getColorFormat() const { return ECF_A8R8G8B8; }

        //! Returns the maximum texture size supported.
        virtual core::dimension2du getMaxTextureSize() const { return core::dimension2du(16384, 16384); }

        virtual void enableScissorTest(const core::rect<s32>& r) { m_clip = r; }
        core::rect<s32> getFullscreenClip() const
        {
            return core::rect<s32>(0, 0, ScreenSize.Width, ScreenSize.Height);
        }
        virtual void disableScissorTest()      { m_clip = getFullscreenClip(); }
        virtual const core::dimension2d<u32>& getCurrentRenderTargetSize() const { return ScreenSize; }
        VkSampler getSampler(GEVulkanSampler s) const
        {
            if (s >= GVS_COUNT)
                return VK_NULL_HANDLE;
            return m_vk->samplers[s];
        }
        VkDevice getDevice() const { return m_vk->device; }
        void destroyVulkan();
        bool createBuffer(VkDeviceSize size, VkBufferUsageFlags usage,
                          VmaAllocationCreateInfo& alloc_create_info,
                          VkBuffer& buffer, VmaAllocation& buffer_allocation);
        VkPhysicalDevice getPhysicalDevice() const { return m_physical_device; }
        const VkPhysicalDeviceFeatures& getPhysicalDeviceFeatures() const
                                                          { return m_features; }
        const VkPhysicalDeviceProperties& getPhysicalDeviceProperties() const
                                                        { return m_properties; }
        VkExtent2D getSwapChainExtent() const    { return m_swap_chain_extent; }
        size_t getSwapChainImagesCount() const
                                      { return m_vk->swap_chain_images.size(); }
        VkRenderPass getRenderPass() const         { return m_vk->render_pass; }
        void copyBuffer(VkBuffer src_buffer, VkBuffer dst_buffer, VkDeviceSize size);
        VkCommandBuffer getCurrentCommandBuffer()
                              { return m_vk->command_buffers[m_current_frame]; }
        std::vector<VkImage>& getSwapChainImages()
                                             { return m_vk->swap_chain_images; }
        std::vector<VkFramebuffer>& getSwapChainFramebuffers()
                                       { return m_vk->swap_chain_framebuffers; }

        unsigned int getCurrentFrame() const         { return m_current_frame; }
        unsigned int getCurrentImageIndex() const      { return m_image_index; }
        constexpr static unsigned getMaxFrameInFlight()            { return 2; }
        video::SColor getClearColor() const            { return m_clear_color; }
        video::SColor getRTTClearColor() const     { return m_rtt_clear_color; }
        const core::rect<s32>& getCurrentClip() const         { return m_clip; }
        video::ITexture* getWhiteTexture() const     { return m_white_texture; }
        video::ITexture* getTransparentTexture() const
                                               { return m_transparent_texture; }
        void getRotatedRect2D(VkRect2D* rect);
        void getRotatedViewport(VkViewport* vp, bool handle_rtt);
        const core::matrix4& getPreRotationMatrix()
                                               { return m_pre_rotation_matrix; }
        virtual void pauseRendering();
        virtual void unpauseRendering();
        void updateSwapInterval(int value)
        {
            if (m_params.SwapInterval == value)
                return;
            m_params.SwapInterval = value;
            destroySwapChainRelated(false/*handle_surface*/);
            createSwapChainRelated(false/*handle_surface*/);
        }
        void updateRenderScale(float value);
        uint32_t getGraphicsFamily() const         { return m_graphics_family; }
        unsigned getGraphicsQueueCount() const
                                              { return m_graphics_queue_count; }
        std::unique_lock<std::mutex> getGraphicsQueue(VkQueue* queue) const;
        void waitIdle(bool flush_command_loader = false);
        void setDisableWaitIdle(bool val)         { m_disable_wait_idle = val; }
        IrrlichtDevice* getIrrlichtDevice() const  { return m_irrlicht_device; }
        GEVulkanDepthTexture* getDepthTexture() const { return m_depth_texture; }
        VkFormat findSupportedFormat(const std::vector<VkFormat>& candidates,
                                     VkImageTiling tiling,
                                     VkFormatFeatureFlags features);
        VmaAllocator getVmaAllocator() const         { return m_vk->allocator; }
        GEVulkanMeshCache* getVulkanMeshCache() const;
        GEVulkanTextureDescriptor* getMeshTextureDescriptor() const
                                           { return m_mesh_texture_descriptor; }
        GEVulkanFBOTexture* getRTTTexture() const      { return m_rtt_texture; }
        GEVulkanFBOTexture* getSeparateRTTTexture() const
                                              { return m_separate_rtt_texture; }
        void handleDeletedTextures();
        void addRTTPolyCount(unsigned count)       { m_rtt_polycount += count; }
        SDL_Window* getSDLWindow() const                    { return m_window; }
        void clearDrawCallsCache();
        void addDrawCallToCache(std::unique_ptr<GEVulkanDrawCall>& dc);
        std::unique_ptr<GEVulkanDrawCall> getDrawCallFromCache();
        GESPM* getBillboardQuad() const             { return m_billboard_quad; }
    private:
        struct SwapChainSupportDetails
        {
            VkSurfaceCapabilitiesKHR capabilities;
            std::vector<VkSurfaceFormatKHR> formats;
            std::vector<VkPresentModeKHR> presentModes;
        };

        //! returns a device dependent texture from a software surface (IImage)
        //! THIS METHOD HAS TO BE OVERRIDDEN BY DERIVED DRIVERS WITH OWN TEXTURES
        virtual video::ITexture* createDeviceDependentTexture(IImage* surface, const io::path& name, void* mipmapData=0) { return NULL; }

        //! Adds a new material renderer to the VideoDriver, based on a high level shading
        //! language.
        virtual s32 addHighLevelShaderMaterial(
            const c8* vertexShaderProgram,
            const c8* vertexShaderEntryPointName,
            E_VERTEX_SHADER_TYPE vsCompileTarget,
            const c8* pixelShaderProgram,
            const c8* pixelShaderEntryPointName,
            E_PIXEL_SHADER_TYPE psCompileTarget,
            const c8* geometryShaderProgram,
            const c8* geometryShaderEntryPointName = "main",
            E_GEOMETRY_SHADER_TYPE gsCompileTarget = EGST_GS_4_0,
            scene::E_PRIMITIVE_TYPE inType = scene::EPT_TRIANGLES,
            scene::E_PRIMITIVE_TYPE outType = scene::EPT_TRIANGLE_STRIP,
            u32 verticesOut = 0,
            IShaderConstantSetCallBack* callback = 0,
            E_MATERIAL_TYPE baseMaterial = video::EMT_SOLID,
            s32 userData = 0,
            E_GPU_SHADING_LANGUAGE shadingLang = EGSL_DEFAULT) { return 0; }

        SIrrlichtCreationParameters m_params;
        SMaterial Material;
        // RAII to auto cleanup
        struct VK
        {
            VkInstance instance;
            VkDebugUtilsMessengerEXT debug;
            VkSurfaceKHR surface;
            VkDevice device;
            VmaAllocator allocator;
            VkSwapchainKHR swap_chain;
            std::vector<VkImage> swap_chain_images;
            std::vector<VkImageView> swap_chain_image_views;
            std::vector<VkSemaphore> image_available_semaphores;
            std::vector<VkSemaphore> render_finished_semaphores;
            std::vector<VkFence> in_flight_fences;
            std::vector<VkCommandPool> command_pools;
            std::vector<VkCommandBuffer> command_buffers;
            std::array<VkSampler, GVS_COUNT> samplers;
            VkRenderPass render_pass;
            std::vector<VkFramebuffer> swap_chain_framebuffers;
            VK()
            {
                instance = VK_NULL_HANDLE;
                debug = VK_NULL_HANDLE;
                surface = VK_NULL_HANDLE;
                device = VK_NULL_HANDLE;
                allocator = VK_NULL_HANDLE;
                swap_chain = VK_NULL_HANDLE;
                samplers = {{}};
                render_pass = VK_NULL_HANDLE;
            }
            ~VK()
            {
                for (unsigned i = 0; i < command_buffers.size(); i++)
                {
                    vkFreeCommandBuffers(device, command_pools[i], 1,
                        &command_buffers[i]);
                    vkDestroyCommandPool(device, command_pools[i], NULL);
                }
                for (VkFramebuffer& framebuffer : swap_chain_framebuffers)
                    vkDestroyFramebuffer(device, framebuffer, NULL);
                if (render_pass != VK_NULL_HANDLE)
                    vkDestroyRenderPass(device, render_pass, NULL);
                if (device != VK_NULL_HANDLE)
                {
                    for (unsigned i = 0; i < GVS_COUNT; i++)
                        vkDestroySampler(device, samplers[i], NULL);
                }
                for (VkSemaphore& semaphore : image_available_semaphores)
                    vkDestroySemaphore(device, semaphore, NULL);
                for (VkSemaphore& semaphore : render_finished_semaphores)
                    vkDestroySemaphore(device, semaphore, NULL);
                for (VkFence& fence : in_flight_fences)
                    vkDestroyFence(device, fence, NULL);
                for (VkImageView& image_view : swap_chain_image_views)
                    vkDestroyImageView(device, image_view, NULL);
                if (swap_chain != VK_NULL_HANDLE)
                    vkDestroySwapchainKHR(device, swap_chain, NULL);
                if (allocator != VK_NULL_HANDLE)
                    vmaDestroyAllocator(allocator);
                if (device != VK_NULL_HANDLE)
                    vkDestroyDevice(device, NULL);
                if (surface != VK_NULL_HANDLE)
                    vkDestroySurfaceKHR(instance, surface, NULL);
                if (vkDestroyDebugUtilsMessengerEXT && debug != VK_NULL_HANDLE)
                     vkDestroyDebugUtilsMessengerEXT(instance, debug, NULL);
                if (instance != VK_NULL_HANDLE)
                    vkDestroyInstance(instance, NULL);
            }
        };
        std::unique_ptr<VK> m_vk;
        VkFormat m_swap_chain_image_format;
        VkExtent2D m_swap_chain_extent;
        VkPhysicalDevice m_physical_device;
        std::vector<const char*> m_device_extensions;
        VkSurfaceCapabilitiesKHR m_surface_capabilities;
        std::vector<VkSurfaceFormatKHR> m_surface_formats;
        std::vector<VkPresentModeKHR> m_present_modes;
        std::vector<VkQueue> m_graphics_queue;
        VkQueue m_present_queue;
        mutable std::vector<std::mutex*> m_graphics_queue_mutexes;

        uint32_t m_graphics_family;
        uint32_t m_present_family;
        unsigned m_graphics_queue_count;
        VkPhysicalDeviceProperties m_properties;
        VkPhysicalDeviceFeatures m_features;

        unsigned int m_current_frame;
        uint32_t m_image_index;
        video::SColor m_clear_color, m_rtt_clear_color;
        core::rect<s32> m_clip;
        core::rect<s32> m_viewport;
        core::matrix4 m_pre_rotation_matrix;

        video::ITexture* m_white_texture;
        video::ITexture* m_transparent_texture;

        SDL_Window* m_window;
        bool m_disable_wait_idle;

        IrrlichtDevice* m_irrlicht_device;
        GEVulkanDepthTexture* m_depth_texture;
        GEVulkanTextureDescriptor* m_mesh_texture_descriptor;
        GEVulkanFBOTexture* m_rtt_texture;
        GEVulkanFBOTexture* m_prev_rtt_texture;
        GEVulkanFBOTexture* m_separate_rtt_texture;
        u32 m_rtt_polycount;

        std::vector<std::unique_ptr<GEVulkanDrawCall> > m_draw_calls_cache;
        GESPM* m_billboard_quad;

        void createInstance(SDL_Window* window);
        void findPhysicalDevice();
        bool checkDeviceExtensions(VkPhysicalDevice device);
        bool findQueueFamilies(VkPhysicalDevice device, uint32_t* graphics_family, unsigned* graphics_queue_count, uint32_t* present_family);
        bool updateSurfaceInformation(VkPhysicalDevice device,
                                      VkSurfaceCapabilitiesKHR* surface_capabilities,
                                      std::vector<VkSurfaceFormatKHR>* surface_formats,
                                      std::vector<VkPresentModeKHR>* present_modes);
        void createDevice();
        void createSwapChain();
        void createSyncObjects();
        void createCommandBuffers();
        void createSamplers();
        void createRenderPass();
        void createFramebuffers();
        void createUnicolorTextures();
        void initPreRotationMatrix();
        std::string getVulkanVersionString() const;
        std::string getDriverVersionString() const;
        void destroySwapChainRelated(bool handle_surface);
        void createSwapChainRelated(bool handle_surface);
        void buildCommandBuffers();
        void createBillboardQuad();
    };

}

#endif // _IRR_COMPILE_WITH_VULKAN_
#endif // __VULKAN_DRIVER_INCLUDED__