1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
|
/* ==========================================================================
* Copyright (c) 2022 SuperTuxKart-Team
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit
* persons to whom the Software is furnished to do so, subject to the
* following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
* NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
* ==========================================================================
*/
#ifndef HEADER_MINI_GLM_HPP
#define HEADER_MINI_GLM_HPP
#include "LinearMath/btQuaternion.h"
#include "LinearMath/btTransform.h"
#include "LinearMath/btVector3.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <quaternion.h>
#include <vector3d.h>
#include "irrMath.h"
using namespace irr;
// GLM without template
namespace MiniGLM
{
// ------------------------------------------------------------------------
inline float overflow()
{
volatile float f = 1e10;
for (int i = 0; i < 10; i++)
f *= f; // this will overflow before the for loop terminates
return f;
} // overflow
// ------------------------------------------------------------------------
inline float toFloat32(short value)
{
int s = (value >> 15) & 0x00000001;
int e = (value >> 10) & 0x0000001f;
int m = value & 0x000003ff;
if (e == 0)
{
if (m == 0)
{
//
// Plus or minus zero
//
uint32_t tmp_data = (unsigned int)(s << 31);
float ret;
memcpy(&ret, &tmp_data, 4);
return ret;
}
else
{
//
// Denormalized number -- renormalize it
//
while(!(m & 0x00000400))
{
m <<= 1;
e -= 1;
}
e += 1;
m &= ~0x00000400;
}
}
else if (e == 31)
{
if (m == 0)
{
//
// Positive or negative infinity
//
uint32_t tmp_data = (unsigned int)((s << 31) | 0x7f800000);
float ret;
memcpy(&ret, &tmp_data, 4);
return ret;
}
else
{
//
// Nan -- preserve sign and significand bits
//
uint32_t tmp_data = (unsigned int)((s << 31) | 0x7f800000 |
(m << 13));
float ret;
memcpy(&ret, &tmp_data, 4);
return ret;
}
}
//
// Normalized number
//
e = e + (127 - 15);
m = m << 13;
//
// Assemble s, e and m.
//
uint32_t tmp_data = (unsigned int)((s << 31) | (e << 23) | m);
float ret;
memcpy(&ret, &tmp_data, 4);
return ret;
} // toFloat32
// ------------------------------------------------------------------------
inline short toFloat16(float const & f)
{
int i;
memcpy(&i, &f, 4);
//
// Our floating point number, f, is represented by the bit
// pattern in integer i. Disassemble that bit pattern into
// the sign, s, the exponent, e, and the significand, m.
// Shift s into the position where it will go in in the
// resulting half number.
// Adjust e, accounting for the different exponent bias
// of float and half (127 versus 15).
//
int s = (i >> 16) & 0x00008000;
int e = ((i >> 23) & 0x000000ff) - (127 - 15);
int m = i & 0x007fffff;
//
// Now reassemble s, e and m into a half:
//
if (e <= 0)
{
if (e < -10)
{
//
// E is less than -10. The absolute value of f is
// less than half_MIN (f may be a small normalized
// float, a denormalized float or a zero).
//
// We convert f to a half zero.
//
return short(s);
}
//
// E is between -10 and 0. F is a normalized float,
// whose magnitude is less than __half_NRM_MIN.
//
// We convert f to a denormalized half.
//
m = (m | 0x00800000) >> (1 - e);
//
// Round to nearest, round "0.5" up.
//
// Rounding may cause the significand to overflow and make
// our number normalized. Because of the way a half's bits
// are laid out, we don't have to treat this case separately;
// the code below will handle it correctly.
//
if (m & 0x00001000)
m += 0x00002000;
//
// Assemble the half from s, e (zero) and m.
//
return short(s | (m >> 13));
}
else if (e == 0xff - (127 - 15))
{
if (m == 0)
{
//
// F is an infinity; convert f to a half
// infinity with the same sign as f.
//
return short(s | 0x7c00);
}
else
{
//
// F is a NAN; we produce a half NAN that preserves
// the sign bit and the 10 leftmost bits of the
// significand of f, with one exception: If the 10
// leftmost bits are all zero, the NAN would turn
// into an infinity, so we have to set at least one
// bit in the significand.
//
m >>= 13;
return short(s | 0x7c00 | m | (m == 0));
}
}
else
{
//
// E is greater than zero. F is a normalized float.
// We try to convert f to a normalized half.
//
//
// Round to nearest, round "0.5" up
//
if (m & 0x00001000)
{
m += 0x00002000;
if (m & 0x00800000)
{
m = 0; // overflow in significand,
e += 1; // adjust exponent
}
}
//
// Handle exponent overflow
//
if (e > 30)
{
overflow(); // Cause a hardware floating point overflow;
return short(s | 0x7c00);
// if this returns, the half becomes an
} // infinity with the same sign as f.
//
// Assemble the half from s, e and m.
//
return short(s | (e << 10) | (m >> 13));
}
} // toFloat16
// ------------------------------------------------------------------------
inline uint32_t normalizedSignedFloatsTo1010102
(const std::array<float, 3>& src, int extra_2_bit = -1)
{
int part = 0;
uint32_t packed = 0;
float v = fminf(1.0f, fmaxf(-1.0f, src[0]));
if (v > 0.0f)
{
part = (int)((v * 511.0f) + 0.5f);
}
else
{
part = (int)((v * 512.0f) - 0.5f);
}
packed |= ((uint32_t)part & 1023) << 0;
v = fminf(1.0f, fmaxf(-1.0f, src[1]));
if (v > 0.0f)
{
part = (int)((v * 511.0f) + 0.5f);
}
else
{
part = (int)((v * 512.0f) - 0.5f);
}
packed |= ((uint32_t)part & 1023) << 10;
v = fminf(1.0f, fmaxf(-1.0f, src[2]));
if (v > 0.0f)
{
part = (int)((v * 511.0f) + 0.5f);
}
else
{
part = (int)((v * 512.0f) - 0.5f);
}
packed |= ((uint32_t)part & 1023) << 20;
if (extra_2_bit >= 0)
{
part = extra_2_bit;
}
else
{
part = (int)(-0.5f);
}
packed |= ((uint32_t)part & 3) << 30;
return packed;
} // normalizedSignedFloatsTo1010102
// ------------------------------------------------------------------------
inline std::array<short, 4> vertexType2101010RevTo4HF(uint32_t packed)
{
std::array<float, 4> ret;
int part = packed & 1023;
if (part & 512)
{
ret[0] = (float)(1024 - part) * (-1.0f / 512.0f);
}
else
{
ret[0] = (float)part * (1.0f / 511.0f);
}
part = (packed >> 10) & 1023;
if (part & 512)
{
ret[1] = (float)(1024 - part) * (-1.0f / 512.0f);
}
else
{
ret[1] = (float)part * (1.0f / 511.0f);
}
part = (packed >> 20) & 1023;
if (part & 512)
{
ret[2] = (float)(1024 - part) * (-1.0f / 512.0f);
}
else
{
ret[2] = (float)part * (1.0f / 511.0f);
}
part = (packed >> 30) & 3;
if (part & 2)
{
ret[3] = (float)(4 - part) * (-1.0f / 2.0f);
}
else
{
ret[3] = (float)part;
}
std::array<short, 4> result;
for (int i = 0; i < 4; i++)
{
result[i] = toFloat16(ret[i]);
}
return result;
} // vertexType2101010RevTo4HF
// ------------------------------------------------------------------------
inline std::array<float, 4> extractNormalizedSignedFloats(uint32_t packed,
bool calculate_w = false)
{
std::array<float, 4> ret = {};
int part = packed & 1023;
if (part & 512)
{
ret[0] = (float)(1024 - part) * (-1.0f / 512.0f);
}
else
{
ret[0] = (float)part * (1.0f / 511.0f);
}
part = (packed >> 10) & 1023;
if (part & 512)
{
ret[1] = (float)(1024 - part) * (-1.0f / 512.0f);
}
else
{
ret[1] = (float)part * (1.0f / 511.0f);
}
part = (packed >> 20) & 1023;
if (part & 512)
{
ret[2] = (float)(1024 - part) * (-1.0f / 512.0f);
}
else
{
ret[2] = (float)part * (1.0f / 511.0f);
}
if (calculate_w)
{
float inv_sqrt_2 = 1.0f / sqrtf(2.0f);
ret[0] *= inv_sqrt_2;
ret[1] *= inv_sqrt_2;
ret[2] *= inv_sqrt_2;
float largest_val = sqrtf(fmaxf(0.0f, 1.0f -
(ret[0] * ret[0]) - (ret[1] * ret[1]) - (ret[2] * ret[2])));
part = (packed >> 30) & 3;
switch(part)
{
case 0:
{
auto tmp = ret;
ret[0] = largest_val;
ret[1] = tmp[0];
ret[2] = tmp[1];
ret[3] = tmp[2];
break;
}
case 1:
{
auto tmp = ret;
ret[0] = tmp[0];
ret[1] = largest_val;
ret[2] = tmp[1];
ret[3] = tmp[2];
break;
}
case 2:
{
auto tmp = ret;
ret[0] = tmp[0];
ret[1] = tmp[1];
ret[2] = largest_val;
ret[3] = tmp[2];
break;
}
case 3:
ret[3] = largest_val;
break;
default:
assert(false);
break;
}
}
return ret;
} // extractNormalizedSignedFloats
// ------------------------------------------------------------------------
// Please normalize vector before compressing
// ------------------------------------------------------------------------
inline uint32_t compressVector3(const irr::core::vector3df& vec)
{
return normalizedSignedFloatsTo1010102({{vec.X, vec.Y, vec.Z}});
} // compressVector3
// ------------------------------------------------------------------------
inline core::vector3df decompressVector3(uint32_t packed)
{
const std::array<float, 4> out = extractNormalizedSignedFloats(packed);
core::vector3df ret(out[0], out[1], out[2]);
return ret.normalize();
} // decompressVector3
// ------------------------------------------------------------------------
inline uint32_t compressQuaternion(const btQuaternion& q)
{
const float length = q.length();
assert(length != 0.0f);
std::array<float, 4> tmp_2 =
{{
q.x() / length,
q.y() / length,
q.z() / length,
q.w() / length
}};
std::array<float, 3> tmp_3 = {};
auto ret = std::max_element(tmp_2.begin(), tmp_2.end(),
[](float a, float b) { return std::abs(a) < std::abs(b); });
int extra_2_bit = int(std::distance(tmp_2.begin(), ret));
float sqrt_2 = sqrtf(2.0f);
switch (extra_2_bit)
{
case 0:
{
float neg = tmp_2[0] < 0.0f ? -1.0f : 1.0f;
tmp_3[0] = tmp_2[1] * neg * sqrt_2;
tmp_3[1] = tmp_2[2] * neg * sqrt_2;
tmp_3[2] = tmp_2[3] * neg * sqrt_2;
break;
}
case 1:
{
float neg = tmp_2[1] < 0.0f ? -1.0f : 1.0f;
tmp_3[0] = tmp_2[0] * neg * sqrt_2;
tmp_3[1] = tmp_2[2] * neg * sqrt_2;
tmp_3[2] = tmp_2[3] * neg * sqrt_2;
break;
}
case 2:
{
float neg = tmp_2[2] < 0.0f ? -1.0f : 1.0f;
tmp_3[0] = tmp_2[0] * neg * sqrt_2;
tmp_3[1] = tmp_2[1] * neg * sqrt_2;
tmp_3[2] = tmp_2[3] * neg * sqrt_2;
break;
}
case 3:
{
float neg = tmp_2[3] < 0.0f ? -1.0f : 1.0f;
tmp_3[0] = tmp_2[0] * neg * sqrt_2;
tmp_3[1] = tmp_2[1] * neg * sqrt_2;
tmp_3[2] = tmp_2[2] * neg * sqrt_2;
break;
}
default:
assert(false);
break;
}
return normalizedSignedFloatsTo1010102(tmp_3, extra_2_bit);
} // compressQuaternion
// ------------------------------------------------------------------------
inline uint32_t compressIrrQuaternion(const core::quaternion& q)
{
return compressQuaternion(btQuaternion(q.X, q.Y, q.Z, q.W));
}
// ------------------------------------------------------------------------
inline core::quaternion decompressQuaternion(uint32_t packed)
{
const std::array<float, 4> out = extractNormalizedSignedFloats(packed,
true/*calculate_w*/);
core::quaternion ret(out[0], out[1], out[2], out[3]);
return ret.normalize();
} // decompressQuaternion
// ------------------------------------------------------------------------
inline btQuaternion decompressbtQuaternion(uint32_t packed)
{
const std::array<float, 4> out = extractNormalizedSignedFloats(packed,
true/*calculate_w*/);
btQuaternion ret(out[0], out[1], out[2], out[3]);
return ret.normalize();
} // decompressbtQuaternion
// ------------------------------------------------------------------------
inline std::array<float, 4> getQuaternionInternal(const core::matrix4& m)
{
btVector3 row[3];
memcpy(&row[0][0], &m[0], 12);
memcpy(&row[1][0], &m[4], 12);
memcpy(&row[2][0], &m[8], 12);
std::array<float, 4> q;
float root = row[0].x() + row[1].y() + row[2].z();
const float trace = root;
if (trace > 0.0f)
{
root = sqrtf(trace + 1.0f);
q[3] = 0.5f * root;
root = 0.5f / root;
q[0] = root * (row[1].z() - row[2].y());
q[1] = root * (row[2].x() - row[0].z());
q[2] = root * (row[0].y() - row[1].x());
}
else
{
static int next[3] = {1, 2, 0};
int i = 0;
int j = 0;
int k = 0;
if (row[1].y() > row[0].x())
{
i = 1;
}
if (row[2].z() > row[i][i])
{
i = 2;
}
j = next[i];
k = next[j];
root = sqrtf(row[i][i] - row[j][j] - row[k][k] + 1.0f);
q[i] = 0.5f * root;
root = 0.5f / root;
q[j] = root * (row[i][j] + row[j][i]);
q[k] = root * (row[i][k] + row[k][i]);
q[3] = root * (row[j][k] - row[k][j]);
}
return q;
}
// ------------------------------------------------------------------------
inline core::quaternion getQuaternion(const core::matrix4& m)
{
std::array<float, 4> q = getQuaternionInternal(m);
return core::quaternion(q[0], q[1], q[2], q[3]).normalize();
}
// ------------------------------------------------------------------------
inline btQuaternion getBulletQuaternion(const core::matrix4& m)
{
std::array<float, 4> q = getQuaternionInternal(m);
return btQuaternion(q[0], q[1], q[2], q[3]).normalize();
}
// ------------------------------------------------------------------------
inline uint32_t quickTangent(uint32_t packed_normal)
{
core::vector3df normal = decompressVector3(packed_normal);
core::vector3df tangent;
core::vector3df c1 =
normal.crossProduct(core::vector3df(0.0f, 0.0f, 1.0f));
core::vector3df c2 =
normal.crossProduct(core::vector3df(0.0f, 1.0f, 0.0f));
if (c1.getLengthSQ() > c2.getLengthSQ())
{
tangent = c1;
}
else
{
tangent = c2;
}
tangent.normalize();
// Assume bitangent sign is positive 1.0f
return compressVector3(tangent) | 1 << 30;
} // quickTangent
// ------------------------------------------------------------------------
/** Round and save compressed values (optionally) btTransform.
* It will round with 2 digits with min / max +/- 2^23 / 100 for origin in
* btTransform and call compressQuaternion above to compress the rotation
* part, if compressed_data is provided, 3 24 bits and 1 32 bits of
* compressed data will be written in an int[4] array.
*/
inline void compressbtTransform(btTransform& cur_t,
int* compressed_data = NULL)
{
int x = (int)(cur_t.getOrigin().x() * 100.0f);
int y = (int)(cur_t.getOrigin().y() * 100.0f);
int z = (int)(cur_t.getOrigin().z() * 100.0f);
x = core::clamp(x, -0x800000, 0x7fffff);
y = core::clamp(y, -0x800000, 0x7fffff);
z = core::clamp(z, -0x800000, 0x7fffff);
uint32_t compressed_q = compressQuaternion(cur_t.getRotation());
cur_t.setOrigin(btVector3(
(float)x / 100.0f,
(float)y / 100.0f,
(float)z / 100.0f));
cur_t.setRotation(decompressbtQuaternion(compressed_q));
if (compressed_data)
{
compressed_data[0] = x;
compressed_data[1] = y;
compressed_data[2] = z;
compressed_data[3] = (int)compressed_q;
}
} // compressbtTransform
// ------------------------------------------------------------------------
inline btTransform decompressbtTransform(int* compressed_data)
{
btTransform trans;
trans.setOrigin(btVector3(
(float)compressed_data[0] / 100.0f,
(float)compressed_data[1] / 100.0f,
(float)compressed_data[2] / 100.0f));
trans.setRotation(decompressbtQuaternion(
(uint32_t)compressed_data[3]));
return trans;
} // decompressbtTransform
// ------------------------------------------------------------------------
void unitTesting();
}
#endif
|